Give intervals of differentiability for each function.
1a) $f(x)=|x-3|$
1b) $f(x)=(x+1)^{2 / 3}$
1c) $f(x)=\frac{x+4}{x^{2}-6}$
1d) $f(x)=\left\{\begin{array}{l}x-5, x<0 \\ x^{3}, x \geq 0\end{array}\right.$

$$
(-\infty, 3) \cup(3, \infty)
$$

Determine with the help of a graphing calculator the intervals of differentiability for each function

2a) $f(x)= \begin{cases}x^{2}+1, & x \leq 2 \\ 4 x-3, & x>2\end{cases}$
2b) $f(x)= \begin{cases}x, & x \leq 1 \\ x^{2}, & x>1\end{cases}$

Continuous since $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=5$
Also differentiable at $x=2$ since
$f^{\prime}(2)=4$ for the functions $x^{2}+1$ and $4 x-3$
So, differentiable over all real numbers!
2c) $f(x)= \begin{cases}(x-1)^{3}, & x \leq 1 \\ (x-1)^{2}, & x>1\end{cases}$
2d) $f(x)= \begin{cases}\frac{1}{2} x+1, & x<2 \\ \sqrt{2 x}, & x \geq 2\end{cases}$

Determine if the following statements are true or false. If false, give a counterexample.
3a) If a function is continuous at a point, then it is differentiable at that point.
3b) If a function has derivatives from both the right and the left at a point, then it is differentiable at that point.

3c) If a function is differentiable at a point, then it is continuous at that point.

4) AP MULTIPLE CHOICE EXAMPLES

1) At $x=3$, the function given by $f(x)=\left\{\begin{array}{ll}x^{2}, & x<3 \\ 6 x-9, & x \geq 3\end{array}\right.$ is
(A) undefined.
(B) continuous but not differentiable.
(C) differentiable but not continuous.
(D) neither continuous nor differentiable.
(E) both continuous and differentiable.
2) If $\lim _{x \rightarrow 3} f(x)=7$, which of the following must be true?
I. f is continuous at $x=3$.
II. f is differentiable at $x=3$.
III. $f(3)=7$
(A) None
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III
3) If $\lim _{x \rightarrow a} f(x)=L$, where L is a real number, which of the following must be true?
(A) $f^{\prime}(a)$ exists.
(B) $f(x)$ is continuous at $x=a$.
(C) $f(x)$ is defined at $x=a$.
(D) $f(a)=L$
(E) None of the above
