Give intervals of differentiability for each function.

$$f(x) = |x-3|$$

$$f(x) = (x+1)^{2/2}$$

$$f(x) = \frac{x+4}{x^2-6}$$

$$\mathbf{d)} \ f(x)$$

1a)
$$f(x) = |x-3|$$
 1b) $f(x) = (x+1)^{2/3}$ 1c) $f(x) = \frac{x+4}{x^2-6}$ 1d) $f(x) = \begin{cases} x-5, & x < 0 \\ x^3, & x \ge 0 \end{cases}$

Determine with the help of a graphing calculator the intervals of differentiability for each function

2a)
$$f(x) = \begin{cases} x^2 + 1, & x \le 2 \\ 4x - 3, & x > 2 \end{cases}$$

2b)
$$f(x) = \begin{cases} x, & x \le 1 \\ x^2, & x > 1 \end{cases}$$

Continuous since $\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = 5$

Also differentiable at x = 2 since

f'(2) = 4 for the functions $x^2 + 1$ and 4x - 3

So, differentiable over all real numbers!

2c)
$$f(x) = \begin{cases} (x-1)^3, & x \le 1\\ (x-1)^2, & x > 1 \end{cases}$$

$$\frac{2d}{f(x)}$$

2d)
$$f(x) = \begin{cases} \frac{1}{2}x + 1, & x < 2\\ \sqrt{2x}, & x \ge 2 \end{cases}$$

Determine if the following statements are true or false. If false, give a counterexample.

- 3a) If a function is continuous at a point, then it is differentiable at that point.
- If a function has derivatives from both the right and the left at a point, then it is 3b) differentiable at that point.
- If a function is differentiable at a point, then it is continuous at that point. 3c)

4) AP MULTIPLE CHOICE EXAMPLES

- 1) At x = 3, the function given by $f(x) = \begin{cases} x^2, & x < 3 \\ 6x 9, & x \ge 3 \end{cases}$ is
 - (A) undefined.
 - (B) continuous but not differentiable.
 - (C) differentiable but not continuous.
 - (D) neither continuous nor differentiable.
 - (E) both continuous and differentiable.
- 2) If $\lim_{x\to 3} f(x) = 7$, which of the following must be true?
 - I. f is continuous at x = 3.
 - II. f is differentiable at x = 3.
 - III. f(3) = 7
 - (A) None

(B) II only

(C) III only

(D) I and III only

- (E) I, II, and III
- 3) If $\lim_{x\to a} f(x) = L$, where L is a real number, which of the following must be true?
 - (A) f'(a) exists.
 - (B) f(x) is continuous at x = a.
 - (C) f(x) is defined at x = a.
 - (D) f(a) = L
 - (E) None of the above