1b) $(-\infty,-1) \cup(-1, \infty)$
1c) $(-\infty,-\sqrt{6}) \cup(-\sqrt{6}, \sqrt{6}) \cup(\sqrt{6}, \infty)$
1d) $(-\infty, 0) \cup(0, \infty)$

2b) Continuous since $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow l^{+}} f(x)=1$

NOT differentiable at $x=1$ since
$f^{\prime}(1)=1$ for the function x (from the left)
$f^{\prime}(1)=2$ for the function x^{2} (from the right)
So, differentiable over $(-\infty, 1) \cup(1, \infty)$

2c) Continuous since $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow l^{+}} f(x)=0$
Also differentiable at $x=1$ since
$f^{\prime}(1)=0$ for the function $(x-1)^{3}$ (from the left)
$f^{\prime}(1)=0$ for the function $(x-1)^{2}$ (from the right)

So, differentiable over all real numbers!

2d) Continuous since $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=2$
Also differentiable at $x=1$ since
$f^{\prime}(2)=\frac{1}{2}$ for the function $\frac{1}{2} x+1$ (from the left)
$f^{\prime}(2)=\frac{1}{2}$ for the function $\sqrt{2 x}$ (from the right)

So, differentiable over all real numbers!

3a) FALSE Ex) Absolute value functions are continuous everywhere but NEVER differentiable at the x-value of the vertex.

3b) FALSE Ex) Piecewise functions often have an x-value where the derivative exists from the left and the right, but they are NOT EQUAL. See 2b) from above

3c) TRUE
4) AP MULTIPLE CHOICE EXAMPLES

1) At $x=3$, the function given by $f(x)=\left\{\begin{array}{ll}x^{2}, & x<3 \\ 6 x-9, & x \geq 3\end{array}\right.$ is
(A) undefined.
(B) continuous but not differentiable.
(C) differentiable but not continuous.

(D) neither continuous nor differentiable.
(E) both continuous and differentiable.
2) If $\lim _{x \rightarrow 3} f(x)=7$, which of the following must be true?

$$
\begin{aligned}
& \qquad f^{\prime}(x)= \begin{cases}2 x, & x<3 \\
\text { slope } \\
\text { from } \\
\text { left }= \\
\text { true? slope } \\
\text { doing } \\
\text { right }\end{cases}
\end{aligned}
$$

I. f is continuous at $x=3$.

Could be a hole in graph at $(3,7)$
II. f is differentiable at $x=3$.
III. $f(3)=7$
(A) None
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III
3) If $\lim _{x \rightarrow a} f(x)=L$, where L is a real number, which of the following must be true?
(A) $f^{\prime}(a)$ exists.
(B) $f(x)$ is continuous at $x=a$.
(C) $f(x)$ is defined at $x=a$.
(D) $f(a)=L$
(E) None of the above
same as \#2
but the "all symbolic" version!

