1a) Find the volume of the solid of revolution formed by revolving the region bounded by $y = x - x^3$ and the x-axis $(0 \le x \le 1)$ about the y-axis.

1b) Find the volume of the solid formed by revolving the region bounded by the graphs $y = x^2 + 1$, y = 0, x = 0, and x = 1 about the y-axis.

$$V = 2\pi rh$$

$$S =$$

1c) Find the volume of the solid formed by revolving the region bounded by the graph of $x = e^{-y^2}$ and the y-axis $(0 \le y \le 1)$ about the x-axis.

1d) Find the volume of the solid formed by revolving the region bounded by the graphs $y = x^2$, $y = 4x - x^2$ about the y-axis.

$$V = 2\pi r h$$

$$V = S_0^2 2\pi r \chi (4x-2x^2) dx$$

$$V = S_0^2 2\pi \chi (4x-2x^2) dx$$

$$V = S_0^2 2\pi \chi (4x^2-2x^3) dx$$

$$= \frac{16\pi}{3}$$

1e) Find the volume of the solid formed by revolving the region bounded by the graphs $y = x^2$, $y = 4x - x^2$, about the line x = 4.

$$V = 2\pi r h$$

$$V = \int_{0}^{2} 2\pi (4-x)(4x-2x^{2}) dx$$

$$V = \int_{0}^{2} 2\pi (2x^{3}-12x^{2}-16x) dx$$

1f) Find the volume of the solid formed by revolving the region bounded by the graphs $x=y^2$, x=4 about the line y=6.

$$V = 2\pi rh$$

$$V = \int_{-2}^{2} 2\pi (6-y)(4-y^{2}) dy$$

$$V = \int_{-2}^{2} 2\pi (y^{3}-6y^{2}-4y+24) dy$$

$$= \sqrt{128\pi}$$

2) AP MULTIPLE CHOICE EXAMPLES

- 1) The volume of the solid of revolution generated when the region in the first quadrant bounded by the graph of $y = -x^2 + 3x$ and the x-axis is revolved about the y-axis is

 - (A) 6.75π (B) 13.5π
 -) (C) 8.1π
- (D) 9π

$$SA(x) = 2 \pi r h$$

$$= 2 \pi \alpha \cdot (-x^{2} + 3x)$$

$$= 2\pi (-x^{3} + 3x^{2})$$

$$V = 2\pi S_{0}^{3} - x^{3} + 3x^{2} dx$$

$$= 2\pi \cdot (6.5)$$

2) The region in the first quadrant between the x-axis and the graph of $y = 6x - x^2$ is rotated around the y-axis. The volume of the resulting solid of revolution is given by

(A)
$$\int_{0}^{6} \pi (6x - x^{2})^{2} dx$$

(B)
$$\int_0^6 2\pi x \left(6x - x^2\right) dx$$

(C)
$$\int_0^6 \pi x \left(6x - x^2\right)^2 dx$$

(D)
$$\int_0^6 \pi (3 + \sqrt{9 - y})^2 dy$$

(E)
$$\int_0^9 \pi (3 + \sqrt{9 - y})^2 dy$$

$$SA(x) = 2\pi r h$$

$$= 2\pi x \cdot (6x - x^2)$$

$$V = \int_0^6 2\pi x (6x - x^2)$$