EXERCISES FOR SECTION 1.5

In Exercises 1-4, determine whether f(x) approaches ∞ or $-\infty$ as x approaches -2 from the left and from the right.

1.
$$f(x) = \frac{1}{(x+2)^2}$$

2.
$$f(x) = \frac{1}{x+2}$$

$$3. f(x) = \tan \frac{\pi x}{4}$$

4.
$$f(x) = \sec \frac{\pi x}{4}$$

x	-3.5	-3.1	-3.01	-3.001
f(x)	- 35			

x	-2.999	-2.99	-2.9	-2.5
f(x)				

5.
$$f(x) = \frac{1}{x^2 - 9}$$

6.
$$f(x) = \frac{x}{x^2 - 9}$$

7.
$$f(x) = \frac{x^2}{x^2 - 9}$$

8.
$$f(x) = \sec \frac{\pi x}{6}$$

In Exercises 9-24, find the vertical asymptotes (if any) of the function.

9.
$$f(x) = \frac{1}{x^2}$$

10.
$$f(x) = \frac{4}{(x-2)^3}$$

11.
$$h(x) = \frac{x^2 - 2}{x^2 - x - 2}$$

12.
$$g(x) = \frac{2+x}{1-x}$$

13.
$$f(x) = \frac{x^3}{x^2 - 1}$$

14.
$$f(x) = \frac{-4x}{x^2 + 4}$$

15.
$$f(x) = \tan 2x$$

$$16. \ f(x) = \sec \pi x$$

17.
$$T(t) = 1 - \frac{4}{t^2}$$

18.
$$V(s) = \frac{-2}{(s-2)^2}$$

19.
$$f(x) = \frac{x}{x^2 + x - 2}$$

20.
$$f(x) = \frac{1}{(x+3)^4}$$

21.
$$g(x) = \frac{x^3 + 1}{x + 1}$$

22.
$$h(x) = \frac{x^2 - 4}{x^3 + 2x^2 + x + 2}$$

23.
$$s(t) = \frac{t}{\sin t}$$

24.
$$g(\theta) = \frac{\tan \theta}{\theta}$$

In Exercises 25–28, determine whether the function has a vertical asymptote or a removable discontinuity at x = -1. Graph the function using a graphing utility to confirm your answer.

25.
$$f(x) = \frac{x^2 - 1}{x + 1}$$

26.
$$f(x) = \frac{x^2 - 6x - 7}{x + 1}$$

27.
$$f(x) = \frac{x^2 + 1}{x + 1}$$

28.
$$f(x) = \frac{\sin(x+1)}{x+1}$$

In Exercises 29-40, find the limit.

29.
$$\lim_{x\to 2^+} \frac{x-3}{x-2}$$

30.
$$\lim_{x \to 1^+} \frac{2+x}{1-x}$$

31.
$$\lim_{x \to 4^+} \frac{x^2}{x^2 - 16}$$

32.
$$\lim_{x\to 4^-} \frac{x^2}{x^2+16}$$

33.
$$\lim_{x \to -3^{-}} \frac{x^2 + 2x - 3}{x^2 + x - 6}$$

34.
$$\lim_{x \to (-1/2)^+} \frac{6x^2 + x - 1}{4x^2 - 4x - 3}$$

35.
$$\lim_{x \to 0^{-}} \left(1 + \frac{1}{x} \right)$$

36.
$$\lim_{x\to 0^-} \left(x^2 - \frac{1}{x}\right)$$

37.
$$\lim_{x \to 0^+} \frac{2}{\sin x}$$

38.
$$\lim_{x \to (\pi/2)^+} \frac{-2}{\cos x}$$

39.
$$\lim_{x \to 1} \frac{x^2 - x}{(x^2 + 1)(x - 1)}$$

40.
$$\lim_{x\to 3} \frac{x-2}{x^2}$$

In Exercises 41–44, use a graphing utility to graph the function and determine the one-sided limit.

41.
$$f(x) = \frac{x^2 + x + 1}{x^3 - 1}$$

42.
$$f(x) = \frac{x^3 - 1}{x^2 + x + 1}$$

$$\lim_{x\to 1^+} f(x)$$

$$\lim_{x\to 1} f(x)$$

43.
$$f(x) = \frac{1}{x^2 - 25}$$

44.
$$f(x) = \sec \frac{\pi x}{6}$$

$$\lim_{x\to 5^-} f(x)$$

$$\lim_{x\to 3^+} f(x)$$

- **45.** A given sum S is inversely proportional to 1 r, where 0 < |r| < 1. Find the limit of S as $r \to 1^-$.
- **46. Boyle's Law** For a quantity of gas at a constant temperature, the pressure P is inversely proportional to the volume V. Find the limit of P as $V \rightarrow 0^+$.

85

$$r = \frac{2x}{\sqrt{625 - x^2}} \text{ ft/sec}$$

where x is the distance between the base of the ladder and the house.

- (a) Find the rate r when x is 7 feet.
- (b) Find the rate r when x is 15 feet.
- (c) Find the limit of r as $x \rightarrow 25^-$.

Figure for 47

Figure for 48

48. Rate of Change A patrol car is parked 50 feet from a long warehouse (see figure). The revolving light on top of the car turns at a rate of $\frac{1}{2}$ revolution per second. The rate at which the light beam moves along the wall is

 $r = 50\pi \sec^2 \theta$ ft/sec.

- (a) Find the rate r when θ is $\pi/6$.
- (b) Find the rate r when θ is $\pi/3$.
- (c) Find the limit of r as $\theta \rightarrow (\pi/2)^-$.
- 49. Illegal Drugs The cost in millions of dollars for a governmental agency to seize x% of an illegal drug is

$$C = \frac{528x}{100 - x}, \quad 0 \le x < 100.$$

- (a) Find the cost of seizing 25%.
- (b) Find the cost of seizing 50%.
- (c) Find the cost of seizing 75%.
- (d) Find the limit of C as $x \to 100^-$.
- 50. Average Speed On a trip of d miles to another city, a truck driver's average speed was x miles per hour. On the return trip the average speed was y miles per hour. The average speed for the round trip was 50 miles per hour.
 - (a) Verify that $y = \frac{25x}{x 25}$. What is the domain?
 - (b) Complete the table.

x	30	40	50	60
у				

Are the values of y different than expected? Explain.

(c) Find the limit of y as $x \rightarrow 25^+$.

51. **Relativity** According to the theory of relativity, the mass m of a particle depends on its velocity ν . That is,

$$m = \frac{m_0}{\sqrt{1 - (v^2/c^2)}}$$

where m_0 is the mass when the particle is at rest and c is the speed of light. Find the limit of the mass as v approaches c^- .

52. Think About It Use the graph of the function f (see figure) to sketch the graph of g(x) = 1/f(x) on the interval [-2, 3].

- (a) Determine the number of revolutions per minute of the saw.
- (b) How does crossing the belt affect the saw in relation to the motor?
- (c) Let L be the total length of the belt. Write L as a function of φ, where φ is measured in radians. What is the domain of the function? [Hint: Add the lengths of the straight sections of the belt and the length of the belt around each pulley.]
- (d) Use a graphing utility to complete the table.

φ	0.3	0.6	0.9	1.2	1.5
L					

- (e) Use a graphing utility to graph the function over the appropriate domain.
- (f) Find

$$\lim_{\phi \to (\pi/2)^-} L.$$

Use a geometric argument as the basis of a second method of finding this limit.

(g) Find $\lim_{\phi \to 0^+} L$.

