1) Find each limit if possible.

$$\lim_{x \to \infty} \frac{x^2 + 2}{x^3 - 1} = 0$$

(b)
$$\lim_{x \to \infty} \frac{x^2 + 2}{x^2 - 1} = 1$$

(c)
$$\lim_{x \to \infty} \frac{x^2 + 2}{x - 1} = \infty$$
 (Limit does not exist) (c) $\lim_{x \to \infty} \frac{5 - 2x^{3/2}}{3x - 4}$

$$\lim_{x \to \infty} \frac{2x-1}{2x+2}$$

1d)
$$\lim_{x\to\infty}\frac{x}{x^2-1}$$

1e)
$$\lim_{x \to -\infty} \frac{5x^2}{x+3}$$

$$\lim_{x \to -\infty} \frac{5x^2}{x+3}$$

1c)
$$\lim_{x \to \infty} \frac{2x - 1}{3x + 2}$$
 1d) $\lim_{x \to \infty} \frac{x}{x^2 - 1}$ 1e) $\lim_{x \to -\infty} \frac{5x^2}{x + 3}$ 1f) $\lim_{x \to \infty} \frac{5x^3 + 1}{10x^3 - 3x^2 + 7}$

1b) (a) $\lim_{x \to \infty} \frac{5 - 2x^{3/2}}{3x^2}$

(b) $\lim_{x\to\infty} \frac{5-2x^{3/2}}{3x^{3/2}}$

$$\lim_{x \to \infty} \left(4 + \frac{3}{x} \right)$$

= 4

$$\lim_{x \to -\infty} \left(\frac{5}{x} - \right)$$

2b)
$$\lim_{x \to -\infty} \left(\frac{5}{x} - \frac{x}{3} \right)$$
 2c) $\lim_{x \to -\infty} \left(\frac{1}{2}x - \frac{4}{x^2} \right)$

$$\lim_{x \to -\infty} \frac{2x+1}{\sqrt{x^2-x}}$$

$$= \lim_{x \to -\infty} \frac{2x+1}{\sqrt{x^2 - x}}$$

$$= \lim_{x \to -\infty} \frac{\sqrt{(2x+1)^2}}{\sqrt{x^2 - x}}$$

$$= \lim_{x \to -\infty} \sqrt{\frac{4x^2 + 4x + 1}{x^2 - x}}$$

$$= \lim_{x \to -\infty} \sqrt{\frac{4x}{x^2 - x}}$$

$$=\sqrt{4}$$

=-2 (negative determined by original problem)

3b)
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x - 1}$$