

Shown above is the slope field for which of the following differential equations?

$$\mathbf{B} \qquad \frac{dy}{dx} = -xy$$

$$\bigcirc \qquad \frac{dy}{dx} = -x^2 y$$

2) What is the general solution to the differential equation $rac{dy}{dx} = rac{x-1}{3y^2}$ for y>0 ?

(A)
$$y = \frac{1}{(-\frac{3}{2}x^2 + 3x + C)}$$

$$(\mathbf{B}) \qquad y = \left(e^{\left(\frac{3x^2}{2} - 3x + C\right)}\right)^{\frac{1}{2}}$$

$$\bigcirc$$
 $y=\left(rac{x^2}{2}-x+C
ight)^{rac{1}{3}}$

- **3)** What is the general solution to the differential equation $rac{dy}{dx}=\sqrt{y}-\sqrt{y}\sin x$ for y>0 ?

 - (B) $y = \left(\frac{3}{2}(x + \cos x + C)\right)^{\frac{2}{3}}$
 - $\bigcirc \qquad y = \frac{1}{4}(x + \cos x)^2 + C$

4)

Let $y=f\left(x\right)$ be the particular solution to the differential equation $\frac{dy}{dx}=\frac{1}{2y+1}$ with the initial condition $y\left(0\right)=0$. Which of the following gives an expression for $f\left(x\right)$ and the domain for which the solution is valid?

- (B) $y = \tan x \text{ for } -\frac{\pi}{2} < x < \frac{\pi}{2}$

5) GRAPHING CALCULATOR NEEDED!

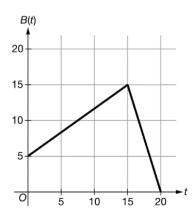
Let f be the function given by $f(x)=\sin{(2x)}\cos{(1+x)}$. What is the average value of f on the closed interval $1\leq x\leq 3$?

- A 0.739
- B 0.369
- © 0.281
- \bigcirc -0.098

- (A) 2
- (B) 7
- \bigcirc $\frac{10}{7}$
- (D) 5

7)

The intensity of radiation at a distance x meters from a source is modeled by the function R given by $R(x) = \frac{k}{x^2}$, where k is a positive constant. Which of the following gives the average intensity of radiation between 10 meters and 50 meters from the source?


- \bigcirc A $\frac{k}{900}$
- $\bigcirc \qquad \frac{1}{40} \left(-\frac{k}{50} + \frac{k}{10} \right)$

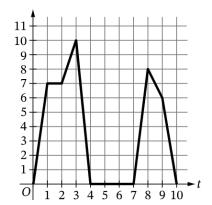
8) GRAPHING CALCULATOR NEEDED!

A cup of coffee is poured, and the temperature is measured to be 120 degrees Fahrenheit. The temperature of the coffee then decreases at a rate modeled by $r(t)=55e^{-0.03t^2}$ degrees Fahrenheit per minute, where t is the number of minutes since the coffee was poured. What is the temperature of the coffee, in degrees Fahrenheit, at time t=1 minute?

- (A) 53.4°F
- (B) 54.5 $^{\circ}F$
- © 65.5°F
- (D) 66.6°F

9)

The rate at which people arrive at a theater box office is modeled by the function B, where B(t) is measured in people per minute and t is measured in minutes. The graph of B for $0 \le t \le 20$ is shown in the figure above. Which of the following is closest to the number of people that arrive at the box office during the time interval $0 \le t \le 20$?


- (A) 15
- (B) 38
- (C) 150
- (D) 188

10) Open Ended: GRAPHING CALCULATOR NEEDED!

Mary and Chance walk in the same direction along a straight path. For $0 \le t \le 20$, Mary's velocity at time t is given by $M(t) = \frac{6010}{t^2 - 3t + 50.5}$ and Chance's velocity at time t is given by $C(t) = 8.5t^3e^{-0.45t}$. Both M(t) and C(t) are positive for $0 \le t \le 20$ and are measured in meters per minute, and t is measured in minutes. Mary is 12 meters ahead of Chance at time t = 0, and Mary remains ahead of Chance for $0 < t \le 20$.

- (a) Find the value of $\frac{1}{10}\int_{5}^{15}M\left(t\right)dt$. Using correct units, interpret the meaning of $\frac{1}{10}\int_{5}^{15}M\left(t\right)dt$ in the context of the problem.
- (b) At time t=10, is Mary speeding up or slowing down? Give a reason for your answer.
- (c) Is the distance between Mary and Chance at time t=18 increasing or decreasing? Give a reason for your answer.
- (d) What is the maximum distance between Mary and Chance over the time interval $0 \leq t \leq 20$? Justify your answer.

11) The Iditarod dog sled race takes place annually in Alaska. The velocity of one dog sled, $v\left(t\right)$, measured in miles per hour, was tracked for a 10 -hour period from 12 p.m. (t=0) to 10 p.m. (t=10).

The graph of the dog sled's velocity during this 10-hour time period is shown above.

(a) Using correct units, interpret the meaning of $\int\limits_0^{10}v(t)\;dt$ in the context of this problem.

Find the value of $\int_{0}^{10} v(t) dt$. Describe how you found your answer.

- **(b)** What is the average velocity of the dog sled on the interval $0 \le t \le 4$? Show work that leads to your answer.
- (c) Assume positive velocity represents movement away from the dog's home. If the dog sled's position at 12 p.m. (t=0) was 20 miles away from home, what would be its position at 10 p.m. (t=10)? Show work that leads to your answer.