

A bottle of milk is taken out of a refrigerator and placed in a pan of hot water to be warmed. The increasing function M models the temperature of the milk at time t , where $M(t)$ is measured in degrees Celsius ($^{\circ}\text{C}$) and t is the number of minutes since the bottle was placed in the pan. M satisfies the differential equation $\frac{dM}{dt} = \frac{1}{4}(40 - M)$. At time $t = 0$, the temperature of the milk is 5°C . It can be shown that $M(t) < 40$ for all values of t .

Use the line tangent to the graph of M at $t = 0$ to approximate $M(2)$, the temperature of the milk at time $t = 2$ minutes.

Secondly, is your approximation for $M(2)$ an over approximation or an under approximation?