1)

What is the $\lim_{x\to 2} f(x)$?

- \bigcirc A $\frac{1}{2}$
- B 1
- **C** 4
- D The limit does not exist.
- **2)** Of the following tables, which best reflects the values of a function g for which $\lim_{x \to 7} g\left(x\right) = 6$?

(A)	x	5.85	5.90	5.95	5.99	6.01	6.05	6.10	6.15
A	g(x)	7.126	7.075	7.033	7.006	6.995	6.977	6.964	6.960

(B)	x	6.85	6.90	6.95	6.99	7.01	7.05	7.10	7.15
В	g(x)	5.620	5.837	5.961	5.998	5.999	5.964	5.863	5.709

<u>(C)</u>	x	6.85	6.90	6.95	6.99	7.01	7.05	7.10	7.15	
©	g(x)	5.919	5.942	5.969	5.993	7.017	7.087	7.177	7.269	

(D)	x	6.85	6.90	6.95	6.99	7.01	7.05	7.10	7.15
(D)	g(x)	1.362	5.954	10.691	14.690	6.010	6.049	6.095	6.140

- (A) The value of the function f at x=3 is 5.
- (B) The value of the function f at x=5 is 3.
- \bigcirc As x approaches 3, the values of f(x) approach 5.
- \bigcirc As x approaches 5, the values of f(x) approach 3.

4)

The graph of a function f is shown above. Which of the following statements is true?

- $\bigcirc \qquad \lim_{x \to 1} f\left(x\right) \text{ does not exist because the left-hand and right-hand limits of } f\left(x\right) \text{ as } x \text{ approaches 1 do not exist.}$

The graph of the function f is shown above. What is $\lim_{x \to 2^+} \!\! f\left(x\right)$?

- A
- (B) 3
- C 4
- D nonexistent

The graph of a function f is shown above. Which of the following statements is true?

- $\lim_{x \to 1} f(x) \text{ does not exist because the left-hand and right-hand limits of } f(x) \text{ as } x \text{ approaches 1 do not exist.}$
- $\lim_{x \to 1} f(x)$ does not exist because while the left-hand and right-hand limits of f(x) as x approaches 1 exist, their values are not equal.

The graph of the function f is shown above. What is $\lim_{x \to 2^+} f\left(x\right)$?

- A
- B) 2
- © 1
- (D) nonexistent

8)

x	3.9	3.99	3.999	3.9999	4.0001	4.001	4.01	4.1
f(x)	5.8	5.85	5.9	5.95	6.999	6.99	6.9	6

The table above gives values of the function f at selected values of x. Which of the following conclusions is supported by the data in the table?

- $\bigcirc \qquad \lim_{x \to 4^-} \! f(x) = 6 \text{ and } \lim_{x \to 4^+} \! f(x) = 7$
- $\bigcirc \qquad \lim_{x \rightarrow 4^-} f(x) = 7 \text{ and } \lim_{x \rightarrow 4^+} f(x) = 6$

9)

$$f(x) = \begin{cases} 5x - 3 & \text{for } x < 2\\ 9 & \text{for } x = 2\\ 4x + 3 & \text{for } x > 2 \end{cases}$$

Let f be the piecewise function defined above. The value of $\lim_{x \to 2^+} f(x)$ is

- A
- B 9
- © 11
- D nonexistent

The graph of the function f is shown above. What is $\lim_{x \to -1} f(f(x))$?

- A
- B 2
- © 5
- D nonexistent

11)

$f\left(2 ight) =3$	$\lim_{x o 2} f(x) = 4$
$g\left(2\right) =-6$	$\lim_{x\to 2} g(x) = -6$
$h\left(2\right) = -3$	$\lim_{x o 2} h\left(x ight) = 2$

The table above gives selected values and limits of the functions $f,\,g$, and h. What is

$$\lim_{x\to 2}\left(h\left(x\right)(5f\left(x\right)+g\left(x\right))\right)?$$

- \bigcirc -27
- \bigcirc B -20
- © 28
- D 34

- **12)** If f is the function defined by $f\left(x\right)=rac{x^{2}-4}{x^{2}+x-6}$, then $\lim_{x
 ightarrow 1}f\left(x
 ight)$ is
 - A 0
 - \bigcirc B $\frac{2}{3}$
 - \bigcirc $\frac{4}{5}$
 - (D) nonexistent
- 13) If f is the function defined by $f(x)=\frac{x^2-4}{\sqrt{x}-\sqrt{2}}$, then $\lim_{x\to 2}f(x)$ is equivalent to which of the following?
 - $ig(egin{aligned} ig(egin{aligned} ig(ig(ig(igx x + 2 ig) ig(\sqrt{x} + \sqrt{2} ig) \end{aligned}$
 - $(\mathbb{B}) \qquad \lim_{x \to 2} \left(\sqrt{x} + \sqrt{2} \right)$
 - $\bigcirc \qquad \lim_{x\to 2} \left(x\sqrt{x} 2\sqrt{2}\right)$
- $f\left(x
 ight)=egin{cases} rac{(x-1)^2(x+1)}{|x-1|} & ext{for } x
 eq 1 \ 2 & ext{for } x=1 \end{cases}$

If f is the function defined above, then $\underset{x\rightarrow1}{\lim}f\left(x\right)$ is

- A 0
- B) 1
- (c) 2
- (D) nonexistent

representative of the function h ?

I.
$$h\left(x
ight) = egin{cases} 12-x & ext{for } x < 3 \ 4x - 3 & ext{for } x > 3 \end{cases}$$

II.	x	0	1	2	3	4	5	6
	h(x)	3	8 3	$\frac{7}{3}$	0	1	2	3

- A I only
- B II only
- C III only
- D II and III only

16)

The graph of the function f is shown above. What are all values of x for which f has a removable discontinuity?

- A 1 only
- B 5 only
- (c) 1 and 7 only
- **D** 1, 5, and 7

The graph of the function f is shown above. Which of the following could be a table of values for f?

(A)

x	0.95	0.99	1	1.001	1.05
f(x)	6.9025	6.9801	7	7.0020	7.1025

(B)

\boldsymbol{x}	0.95	0.99	1	1.001	1.05
f(x)	4.1624	4.0325	7	3.9968	3.8376

(c)

x	0.95	0.99	1	1.001	1.05
f(x)	4.1624	4.0325	4	3.9968	3.8376

D

x	0.95	0.99	1	1.001	1.05
f(x)	4.1624	4.0325	undefined	3.9968	3.8376

- 18) Let f be the function defined by $f(x)=rac{3x^3+2x^2}{x^2-x}$. Which of the following statements is true?
 - $oldsymbol{oldsymbol{A}}$ f has a discontinuity due to a vertical asymptote at x=0 and at x=1.
 - f B f has a removable discontinuity at x=0 and a jump discontinuity at x=1.
 - $oldsymbol{G}$ f has a removable discontinuity at x=0 and a discontinuity due to a vertical asymptote at x=1.
 - $oldsymbol{\mathbb{D}}$ f is continuous at x=0, and f has a discontinuity due to a vertical asymptote at x=1.

$$f(x) = \begin{cases} 2x+3 & \text{for } x < 1\\ 5 & \text{for } x = 1\\ -4x+9 & \text{for } 1 < x < 3\\ 4 & \text{for } x = 3\\ x-6 & \text{for } x > 3 \end{cases}$$

Let f be the piecewise function defined above. Which of the following statements is false?

- $oldsymbol{c}$ f is continuous at x=3.
- 20) Which of the following functions are continuous on the interval 0 < x < 5?

I.
$$f(x) = \frac{x-3}{x^2-9}$$

II.
$$g(x)=rac{x-3}{x^2+9}$$

III.
$$h(x) = \ln(x-3)$$

- (A) II only
- (B) I and II only
- (C) I and III only
- (D) II and III only

B
$$g(x) = \frac{1}{x^3 + x^2 + x + 1}$$

$$\bigcirc h(x) = \frac{\pi}{2} \sin x$$

$$egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} k(x) = rac{1}{1+e^{-x}} \end{array}$$

22)

$$f(x) = \begin{cases} x^2 + b^2 & \text{for } x < 2\\ bx + 2b & \text{for } x \ge 2 \end{cases}$$

Let f be the function defined above, where b is a constant. For what values of b, if any, is f continuous at x = 2?

- 0 only
- 2 only
- 0 and 2
- (D) There is no such b.

23) CALCULATOR NEEDED

$$f(x) = \begin{cases} \frac{\sin(3x)}{6x} & \text{for } x \neq 0 \\ c & \text{for } x = 0 \end{cases}$$

The function f is defined above, where c is a constant. For what value of c is f continuous at x=0 ?

- (A) (
- $lackbox{B}$ $\frac{1}{2}$
- (c)
- (**D**) 2

24) CALCULATOR NEEDED

$$f(x) = \begin{cases} 2 - \sin x & \text{for } x \le 1\\ cx\sqrt{x^2 + 2} + c & \text{for } x > 1 \end{cases}$$

Let f be the function defined above, where c is a constant. For what value of c is f continuous for all x?

- (A) 1.159
- **B** 0.424
- **(c)** 0.409
- $oldsymbol{\mathsf{D}}$ There is no such value of c.

$$f(x) = \begin{cases} \sin x & \text{for } x < 0\\ \cos x & \text{for } 0 \le x \le \frac{3\pi}{2}\\ \tan x & \text{for } \frac{3\pi}{2} < x \le 2\pi\\ \cot x & \text{for } 2\pi < x \le \frac{5\pi}{2} \end{cases}$$

Let f be the function given above. On which of the following intervals is f continuous?

$$(\frac{\pi}{4},\pi)$$

$$(\pi, \frac{7\pi}{4})$$

$$\begin{array}{cc} \textbf{B} & \left(\frac{\pi}{4}, \pi\right) \\ \\ \textbf{C} & \left(\pi, \frac{7\pi}{4}\right) \\ \\ \textbf{D} & \left(\frac{7\pi}{4}, \frac{5\pi}{2}\right) \end{array}$$