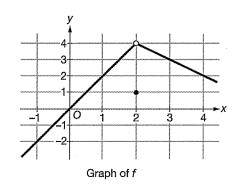
Unit 1 AP Classroom Practice for Sections 1-2

1)



What is the $\lim_{x\to 2} f(x)$?

 \bigcirc $\frac{1}{2}$

"What it approaches" NOT necessarily what it equals!

closer to 6

- B 1
- © 4
 - (D) The limit does not exist.
 - 2) Of the following tables, which best reflects the values of a function g for which $\lim_{x\to7}g(x)=6$?
 - (A)

x	5.85	5.90	5.95	5.99	6.01	6.05	6.10	6.15
g(x)	7.126	7.075	7.033	7.006	6.995	6.977	6.964	6.960

B

					t				
x	6.85	6.90	6.95	6.99	7.01	7.05	7.10	7.15	
g(x)	5.620	5.837	5.961	5.998	5.999	5.964	5.863	5.709	
									ļ

x	6.85	6.90	6.95	6.99	7.01	7.05	7.10	7.15
g(x)	5.919	5.942	5.969	5.993	7.017	7.087	7.177	7.269

closer to 6

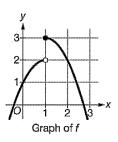
(D)

(C)

x	6.85	6.90	6.95	6.99	7.01	7.05	7.10	7.15
g(x)	1.362	5.954	10.691	14.690	6.010	6.049	6.095	6.140

- (A) The value of the function f at x=3 is 5. POT NEC/SSARILY
- (B) The value of the function f at x = 5 is 3.
- $igcolon{ } igcolon{ } igc$
 - (D) As x approaches 5, the values of f(x) approach 3.

4)



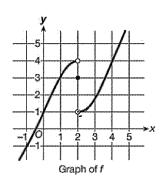
The graph of a function f is shown above. Which of the following statements is true?

$$(A) \qquad \lim_{x \to 1} f(x) = 2.5$$

 $\lim_{x\to 1} f(x)$ does not exist because the left-hand and right-hand limits of f(x) as x approaches do not exist

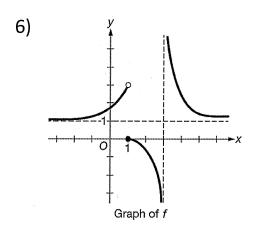
ye do $\lim_{x\to 1+} f(x) = 3$ $\lim_{x\to 1+} f(x) = 3$

 $\lim_{x\to 1} f(x) \text{ does not exist because while the left-hand and right-hand limits of } f(x) \text{ as } x \text{ approaches 1 exist, their values are not equal.}$



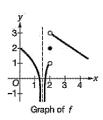
The graph of the function f is shown above. What is $\lim_{x \to 2^+} f\left(x\right)$?

- B) 3
- © 4
- D nonexistent



The graph of a function \boldsymbol{f} is shown above. Which of the following statements is true?

- $\lim_{x \to 1} f(x)$ does not exist because the left-hand and right-hand limits of f(x) as x approaches 1 do not exist.
- $\lim_{x \to 1} f(x)$ does not exist because while the left-hand and right-hand limits of f(x) as x approaches 1 exist, their values are not equal.



The graph of the function f is shown above. What is $\lim_{x \to 2^+} f(x)$?

- B 2
- © ·
- (D) nonexistent

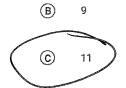
8)

				(4			
x	3.9	3.99	3.999	3.9999	4.0001	4.001	4.01	4.1
f(x)	5.8	5.85	5.9	5.95	6.999	6.99	6.9	6

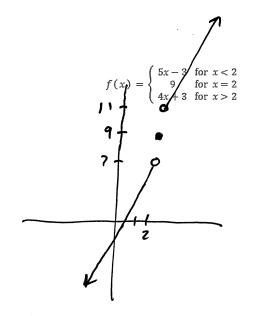
The table above gives values of the function f at selected values of x. Which of the following conclusions is supported by the data in the table?

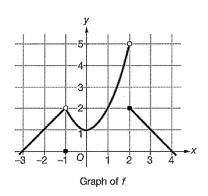
9)

Let f be the piecewise function defined above. The value of $\lim_{x\to 2^+} f(x)$ is

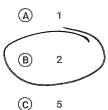


D nonexistent





The graph of the function f is shown above. What is $\lim_{x\to a} f(f(x))$?

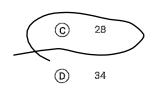


$$= f(2)$$

	f(2)=3	$\lim_{x\to 2} f(x) = 4$
	$g\left(2\right) =-6$	$\lim_{x\to 2} g(x) = -6$
-	$h\left(2\right)=-3$	$\lim_{x\to 2}h\left(x\right)=2$

The table above gives selected values and limits of the functions f, g, and h. What is

 $\lim_{x\to 2} \left(h\left(x\right)\left(5f\left(x\right)+g\left(x\right)\right)\right)?$



$$= (2) \cdot (5(4) + (-6))$$

$$2(20 - 6)$$

$$\begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

=
$$\lim_{x\to z} \frac{(x+z)(x-z)}{(x+3)(x-z)} \longrightarrow \text{NOT nonexistent}$$

as the zero in denominator can be simplified out

= 4

maybe nonexistent

13) If
$$f$$
 is the function defined by $f(x) = \frac{x^2-4}{\sqrt{x}-\sqrt{2}}$, then $\lim_{x\to 2} f(x)$ is equivalent to which of the following?

$$\widehat{\left(\mathbb{A} \right) \quad \lim_{x \to 2} (x+2) \left(\sqrt{x} + \sqrt{2} \right) }$$

$$\lim_{x \to 2} \left(x \sqrt{x} - 2\sqrt{2} \right)$$

$$\lim_{\gamma \to z} f(x) = \frac{0}{0}$$

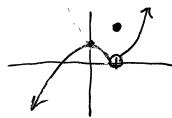
$$f\left(x
ight) = egin{cases} rac{(x-1)^2(x+1)}{|x-1|} & ext{for } x
eq 1 \ 2 & ext{for } x = 1 \end{cases}$$

If f is the function defined above, then $\lim_{x \to 1} f(x)$ is

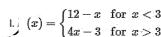
- (B)
- (c)
- (D) nonexistent

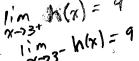
$$(x-1)(x-1)(x+1)$$

$$\begin{cases} +1 \cdot (x^{2}-1) & x > 1 \\ -1 \cdot (x^{2}-1) & x < 1 \\ 2 & x = 1 \end{cases}$$



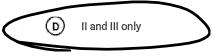
representative of the function h?

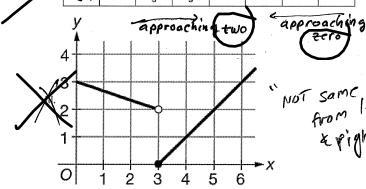




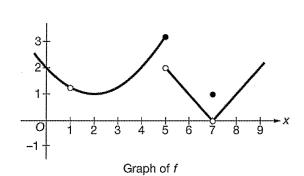
(A)	lo	nly
-----	----	-----

II only





16)



The graph of the function f is shown above. What are all values of x for which f has a removable discontinuity?

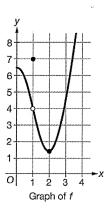
- 1 only
- 5 only
- (c) 1 and 7 only
 - (D) 1, 5, and 7

only "one" point

necled to make

continuous

17)



The graph of the function f is shown above. Which of the following could be a table of values for f?

(A)

x	0.95	0.99	Tour	1.001	1.05
f(x)	6.9025	6.9801	7	7.0020	7.1025

(B)

\boldsymbol{x}	0.95	0.99	1	1.001	1.05
f(x)	4.1624	4.0325	7	3.9968	3.8376

(c)

x	0.95	0.99	1	1.001	1.05
f(x)	4.1624	4.0325	4	3.9968	3.8376

(D)

\boldsymbol{x}	0.95	0.99	1	1.001	1.05
f(x)	4.1624	4.0325	undefined	3.9968	3.8376

- 18) Let f be the function defined by $f(x)=rac{3x^3+2x^2}{x^2-x}$. Which of the following statements is true?
 - $oldsymbol{eta}$ f has a discontinuity due to a vertical asymptote at x=0 and at x=1.

f(x)=

"x" in denom

CAN be simplified (3x+2) (x-1)

 $oldsymbol{\mathsf{B}}$ f has a removable discontinuity at x=0 and a jump discontinuity at x=1.

P(x)=

 $\frac{\chi(3x+2)}{(x-1)}$

0

f has a removable discontinuity at x=0 and a discontinuity due to a vertical asymptote at x=1.

f is continuous at x=0, and f has a discontinuity due to a vertical asymptote at x=1.

V.A. at

n=1 since

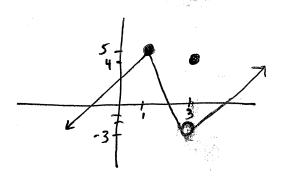
this factor

cannot be

removed

19)

$$f(x) = egin{cases} 2x+3 & ext{for } x < 1 \ 5 & ext{for } x = 1 \ -4x+9 & ext{for } 1 < x < 3 \ 4 & ext{for } x = 3 \ x-6 & ext{for } x > 3 \end{cases}$$



Let f be the piecewise function defined above. Which of the following statements is false?

- f is continuous at x=1.
- (B) f is continuous at x=2.
- **(c)** f is continuous at x=3.
 - **(D)** f is continuous at x=4.
- (20) Which of the following functions are continuous on the interval 0 < x < 5?

$$1. f(x) = \frac{x-3}{x^2-9} \qquad f(x) = \frac{x-3}{(x+3)(x-3)}$$

$$f(x) = \frac{1}{x+3}$$

1. $f(x) = \frac{x-3}{x^2-9}$ $f(x) = \frac{x-3}{(x+3)(x-3)}$ $f(x) = \frac{1}{x+3}$ with hole in graph at x=3 so no?

$$(11)g(x) = \frac{x-3}{x^2+9} \iff \text{Always defined so kges!}$$

$$(11)h(x) = \ln(x-3) \qquad \text{Not defined o < x < 3 so No!}$$

- (A) II only
 - (B)I and II only
 - I and III only
 - II and III only

$$egin{array}{c} egin{array}{c} A \end{array} f(x) = x^4 + x^3 + x^2 + x + 1 \end{array} \hspace{0.5cm} ext{polynomials always continuous}$$

$$(B) g(x) = \frac{1}{(x^3+x^3)(x+1)}, \quad g(x) = \frac{1}{(x^2+1)(x+1)}$$
 so vertical asymptotic at $x=-1$ factor by grouping?

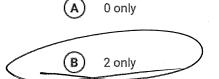
©
$$h(x) = \frac{\pi}{2} \sin x$$
 ... sin function always continuous

(D)
$$k(x) = \frac{1}{1+e^{-x}}$$
 | + e^{-x} NEVER zero so always continuous

$$f(x) = \begin{cases} x^2 + b^2 & \text{for } x < 2 \\ bx + 2b & \text{for } x \geq 2 \end{cases}$$

Let f be the function defined above, where b is a constant. For what values of b, if any, is f continuous at

x = 2?

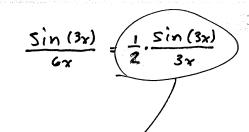


- © 0 and 2
- There is no such b.

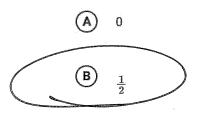
$$\lim_{x\to 2^{-}} f(x) = \lim_{x\to 2^{+}} f(x) = f(z)$$
 $\lim_{x\to 2^{-}} f(x) = \lim_{x\to 2^{+}} f(x) = f(z)$
 $\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} f(x)$
 $\lim_{x\to 2^{+}} f(x) = \lim_{x\to 2^{+}} f(x)$

h=2

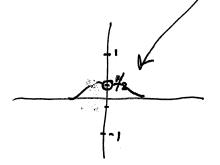
$$f(x) = egin{cases} rac{\sin(3x)}{6x} & ext{for } x
eq 0 \ c & ext{for } x = 0 \end{cases}$$



The function f is defined above, where c is a constant. For what value of c is f continuous at x=0 \mathfrak{F}



- (c) ·
- **(D)** 2



24) CALCULATOR NEEDED

$$f(x) = \begin{cases} 2 - \sin x & \text{for } x \le 1\\ cx\sqrt{x^2 + 2} + c & \text{for } x > 1 \end{cases}.$$

Let f be the function defined above, where c is a constant. For what value of c is f continuous for all x?

(A) 1.159

(D) There is no such value of c.

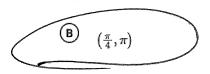
$$\lim_{x\to 1^-} f(x) = \lim_{x\to 1^+} f(x) = f(1)$$

$$2 - \sin(1) = C\sqrt{1+2} + C \quad \lim_{x\to 1^+} f(x)$$

$$2 - \sin(1) = C\sqrt{3} + C$$

25)
$$f(x) = \begin{cases} \sin x & \text{for } x < 0\\ \cos x & \text{for } 0 \le x \le \frac{3\pi}{2}\\ \tan x & \text{for } \frac{3\pi}{2} < x \le 2\pi\\ \cot x & \text{for } 2\pi < x \le \frac{5\pi}{2} \end{cases}$$

Let f be the function given above. On which of the following intervals is f continuous?



- $\bigcirc \quad (\pi, \frac{7\pi}{4})$

