Unit 1 AP Classroom Practice for Sections 3-5

- $\textbf{1)} \quad \text{Let g and h be the functions defined by $g(x)=\sin\left(\frac{\pi}{2}x\right)+4$ and $h(x)=-\frac{1}{4}x^3+\frac{3}{4}x+\frac{9}{2}$. If f is a function that satisfies $g(x)\leq f(x)\leq h(x)$ for $-1< x<2$, what is $\lim_{x\to 1}f(x)$?}$
 - A 4
 - \bigcirc B \bigcirc \bigcirc \bigcirc
 - **(c)** 5
 - **D** The limit cannot be determined from the information given.

2) CALCULATOR ALLOWED!

Let f,g, and h be the functions defined by $f(x)=\frac{\sin x}{2x}$, $g(x)=x^4\cos\left(\frac{1}{x^2}\right)$, and $h(x)=\frac{x^2}{\tan x}$ for $x\neq 0$. All of the following inequalities are true on the interval [-1,1] for $x\neq 0$. Which of the inequalities can be used with the squeeze theorem to find the limit of the function as x approaches 0?

- I. $\frac{1}{4} \le f(x) \le x^2 + \frac{1}{2}$
- II. $-x^4 \leq g(x) \leq x^4$
- III. $-rac{1}{x^2} \leq h(x) \leq rac{1}{x^2}$
- (A) I only
- B II only
- c I and III only
- D II and III only

- 3) The function g is continuous at all x except x=4. If $\lim_{x\to 4}g(x)=\infty$, which of the following statements about g must be true?

 - $oxed{\mathsf{B}}$ The line x=4 is a horizontal asymptote to the graph of g.
 - $oldsymbol{c}$ The line x=4 is a vertical asymptote to the graph of g.
 - lacktriangledown The line y=4 is a vertical asymptote to the graph of g.
- 4) The function g is defined by $g(x)=\frac{|x-5|}{x-5}\ln\left(\frac{x+5}{x^2}\right)$. At what values of x does the graph of g have a vertical asymptote?

 - $oldsymbol{\mathbb{B}} \quad x=0 ext{ only}$
 - x = -5 and x = 0 only

- 5) The function g is continuous at all x except x=2. If $\lim_{x\to 2}g(x)=\infty$, which of the following statements about g must be true?

 - $oxed{\mathsf{B}}$ The line x=2 is a horizontal asymptote to the graph of g.
 - $oldsymbol{\mathbb{C}}$ The line x=2 is a vertical asymptote to the graph of g.
 - lacktriangledown The line y=2 is a vertical asymptote to the graph of g.
- 6) Let f be the function defined by $f(x)=\frac{1-5x-2x^2}{3x^2+7}$ for x>0. Which of the following is a horizontal asymptote to the graph of f?

 - $\bigcirc y = \frac{2}{3}$
 - lacktriangle There is no horizontal asymptote to the graph of f.

- 7) Let f be the function defined by $f(x)=\frac{2^x+5}{e^x+1}$ for x>0. Which of the following is a horizontal asymptote to the graph of f?

 - $oxed{\mathsf{B}} \quad y = rac{2}{e}$

 - lacktriangle There is no horizontal asymptote to the graph of f.
- 8) Let f be the function defined by $f(x)=\frac{3^x+2}{e^{2x}+1}$ for x>0. Which of the following is a horizontal asymptote to the graph of f?
 - $oxed{oldsymbol{eta}} y=0$
 - $oxed{\mathsf{B}} \quad y = rac{3}{e^2}$

 - lacktriangledown There is no horizontal asymptote to the graph of f.

- lacktriangle The graph of f has no horizontal asymptotes.

10)

x	-2	-1	0	1	2	3
f(x)	-2	5	2	-4	-1	3

Selected values of a continuous function f are given in the table above. What is the fewest possible number of zeros of f in the interval [-2,3]?

- (A) Zero
- B One
- C Two
- D Three

x	0	1	3	7
g(x)	24	35	42	68

The table above gives values of a function g at selected values of x. Which of the following statements, if true, would be sufficient to conclude that there exists a number c in the interval [0,7] such that g(c)=50?

- I. g is defined for all x in the interval [0,7].
- II. g is increasing for all x in the interval [0,7].
- III. g is continuous for all x in the interval [0, 7].
- (A) II only
- (B) III only
- c I and III only
- (D) I, II, and III

12) CALCULATOR ALLOWED!

Let f be the function given by $f(x)=\frac{9+2xe^{-\frac{x}{4}}}{\cos(\frac{x}{2})}$. The Intermediate Value Theorem applied to f on the closed interval [24,28] guarantees a solution in [24,28] to which of the following equations?

- **B** f(x) = 9.090
- f(x) = 12.235
- \int D f(x) = 76.999

x	0	1	2	3	4	5
f(x)	1	-5	-4	2	-10	-15

Selected values of a continuous function f are given in the table above. What is the fewest possible number of zeros of f in the interval [0,5]?

- lack A Zero, because f(x) is not equal to 0 for any of the values in the table.
- $oxed{\mathbb{B}}$ One, because f is continuous on the interval [0,5] and f(0)>0>f(5).
- f C Two, because the values for f(x) in the table change from positive to negative twice.
- Three, because f is continuous on the interval [0,5] and f (0)>0>f (1), f (1)<0< f (3), and f (3)>0>f (5).