
1)

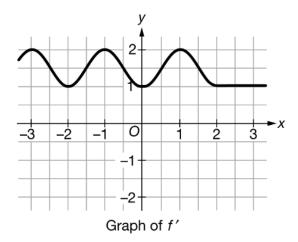
Shown above is the graph of the differentiable function f, along with the line tangent to the graph of f at x=2. What is the value of f'(2) ?

A

 $\frac{1}{2}$

B 2

© 3


(D)

2) An equation for the line tangent to the graph of the differentiable function f at x=3 is y=4x+6. Which of the following statements must be true?

- $\mathrm{l.}\,f\left(0\right)=6$
- II. f(3) = 18
- III. f'(3) = 4

A None

- B I and II only
- C II and III only
- D I, II, and III

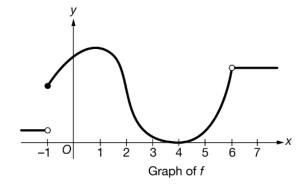
Let f be a differentiable function with $f\left(1\right)=3$. The graph of f' , the derivative of f , is shown above.

Which of the following statements is true about the line tangent to the graph of f at $x=1\,?$

- f B The tangent line has slope 2 and passes through the point (1,2).
- f C The tangent line has slope 0 and passes through the point (1,3).
- \bigcirc The tangent line has slope 0 and passes through the point (1,2).

4) GRAPHING CALCULATOR NEEDED

Let f be the function given by $f(x)=x^4+\frac{1}{2}x^3-5x^2+\tan\left(\frac{x}{2}\right)$. Of the following values of x, at which does the line tangent to the graph of f have the greatest slope?


- x=0

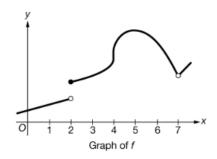
5) GRAPHING CALCULATOR NEEDED

Let f be the function given by $f\left(x
ight)=\cos x-\csc x$. What is the value of $f'\left(1
ight)$?

- f'(1) is undefined.
- B -0.648
- © -0.078
- (b) 0

6)

The figure above shows the graph of a function f, which has a vertical tangent at x=2 and a horizontal tangent at x=4. Which of the following statements is false?


- $oldsymbol{oldsymbol{\mathbb{A}}}$ f is not differentiable at x=-1 because the graph of f has a jump discontinuity at x=-1.
- f B f is not differentiable at x=2 because the graph of f has a vertical tangent at x=2.
- $oldsymbol{\widehat{\mathbf{C}}}$ f is not differentiable at x=4 because the graph of f has a horizontal tangent at x=4 .
- $oldsymbol{oldsymbol{eta}}$ f is not differentiable at x=6 because the graph of f has a removable discontinuity at x=6.

$$f(x) = \begin{cases} x^2 - 20 & \text{for } x < 5 \\ -x^2 + 20 & \text{for } x > 5 \end{cases}$$

Let f be the function defined above. Which of the following statements is true?

- $oldsymbol{oldsymbol{eta}}$ f is not differentiable at x=5 because f is not continuous at x=5.
- $oxed{ {\sf B} } \quad f$ is not differentiable at x=5 because the graph of f has a sharp corner at x=5 .
- f C f is not differentiable at x=5 because the graph of f has a vertical tangent at x=5.
- lack D f is not differentiable at x=5 because f is not defined at x=5.

8)

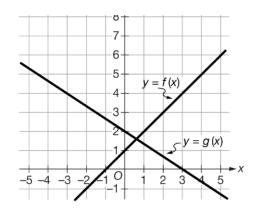
The figure above shows the graph of a function f, which has a vertical tangent at x=4 and a horizontal tangent at x=5. Which of the following statements is false?

- $oldsymbol{eta}$ f is not differentiable at x=2 because the graph of f has a jump discontinuity at x=2 .
- $oxed{\mathbb{B}}$ f is not differentiable at x=4 because the graph of f has a vertical tangent at x=4.
- $oldsymbol{c}$ f is not differentiable at x=5 because the graph of f has a horizontal tangent at x=5 .
- $oldsymbol{oldsymbol{eta}}$ f is not differentiable at x=7 because the graph of f has a removable discontinuity at x=7.

9)
$$g(x) = \begin{cases} 2 - 2x & \text{for } x < 1 \\ 5x - 5 & \text{for } x \ge 1 \end{cases}$$

If g is the function defined above, then $g'\left(1\right)$ is

- $egin{pmatrix} oldsymbol{A} & -2 \end{pmatrix}$
- (B) 0
- **©** 5
- (D) nonexistent
- 10) What is the value of $\lim_{h \to 0} \frac{(16+h)^{\frac{1}{4}}-2}{h}$?
 - **A** 0


 - © 1/8
 - (**D**) 1

11)	$\lim_{h o 0}rac{(x+h)^2+4ig(x+hig)-x^2-4x}{h}$ is
	$oxed{oxed{A}} x^3 + x^4$
	(D) nonexistent
12)	Let f and g be differentiable functions such that $f'(0)=3$ and $g'(0)=7$. If $h(x)=3f(x)-2g(x)-5\cos x-3$, what is the value of $h'(0)$?
	▲ -8
	B −5
	© 1
	D 28
13)	Let f be the function given by $f\left(x ight)=5x^3-3x-7$. What is the value of $f'\left(-2 ight)$?
	B 17
	© 50

D

57

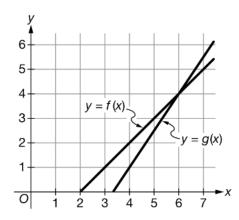
14)

The graphs of the linear functions f and g are shown above. If h(x)=f(x)+g(x), then $h'\left(x\right)=f(x)$

B 0

 \bigcirc $\frac{1}{3}$

 $\bigcirc \qquad \qquad \frac{1}{3}x+3$


15) If $f(x)=\sin x$, then $\lim_{x o 2\pi}rac{f(2\pi)-f(x)}{x-2\pi}=$

 \bigcirc -2π

lacksquare -1

c

16)

The graphs of the linear function f and the linear function g are shown in the figure above. If

 $h\left(x
ight) =f\left(x
ight) g\left(x
ight)$, then $h^{\prime}\left(4
ight) =% \left(x
ight) \left(x
ight)$

- $lackbox{B}$ $\frac{3}{2}$
- © 7/2
- **D** 4
- 17) Let f be a differentiable function such that f(2)=2 and f'(2)=5. If $g(x)=x^3f(x)$, what is the value of g'(2)?
 - (A) 17
 - **B** 24
 - **c** 60
 - **D** 64

x	f(x)	f'(x)	g(x)	g'(x)
0	4	$\frac{1}{2}$	-2	$\frac{3}{2}$

The table above gives values of the differentiable functions f and g and their derivatives at x=0. If

$$h(x)=rac{6f(x)}{g(x)-1}$$
 , then $h'\left(0
ight)=$

- **A** 15
- **B** 3
- **C** 2
- D _5
- 19) Let f be a differentiable function such that f(8)=2 and f'(8)=5. If g is the function defined by $g(x)=\frac{f(x)}{\sqrt[3]{x}}$, what is the value of g'(8)?

 - B =
 - \bigcirc $\frac{61}{24}$
 - **D** 60

20) If $f(x) = \sec x$, then $\lim_{x o \frac{\pi}{3}} rac{f(x) - f\left(rac{\pi}{3}
ight)}{x - rac{\pi}{3}}$ is

- (A) 0
- $\mathbb{B} \quad \sec\left(\frac{\pi}{3}\right)$
- $\bigcirc \qquad \sec\left(\frac{\pi}{3}\right)\tan\left(\frac{\pi}{3}\right)$
- D nonexistent

21) $\frac{d}{dx}(\cos x \tan x) =$

- \bigcirc B $\cos x$
- $-\sin x \sec^2 x$
- \bigcirc $\sin x$

22) Which of the following correctly shows the derivation of $\frac{d}{dx}(\cot x)$?

- $\frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{1}{\tan x}\right) = \frac{1}{\frac{d}{dx}(\tan x)} = \frac{-1}{\sec^2 x}$
- $\frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{1}{\tan x}\right) = \frac{\tan x \frac{d}{dx}(1) 1 \cdot \frac{d}{dx}(\tan x)}{\tan^2 x} = \frac{(\tan x) \cdot 0 \sec^2 x}{\tan^2 x} = -\frac{\sec^2 x}{\tan^2 x}$
- $\frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{1}{\tan x}\right) = \frac{\tan x \frac{d}{dx}(1) + 1 \cdot \frac{d}{dx}(\tan x)}{\tan^2 x} = \frac{\tan x \cdot 0 + \sec^2 x}{\tan^2 x} = \frac{\sec^2 x}{\tan^2 x}$

23) Let f be the function defined by $f(x) = \sin(h(x))$, where h is a differentiable function. Which of the following is equivalent to the derivative of f with respect to x?

 $egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$

- $oxed{\mathbb{B}} \quad \cos\left(h\prime(x)\right)$
- \bigcirc $\cos(h(x))h'(x)$
- 24) Let $f(x) = x^3$ and $g(x) = \frac{x}{x-1}$. If h is the function defined by h(x) = f(g(x)), which of the following gives a correct expression for h'(x)?

 $\widehat{ \textbf{A}} \quad 3(g(x))^2 = 3\big(\tfrac{x}{x-1}\big)^2$

- B $3(g'(x))^2 = 3\left(\frac{(x-1)-x}{(x-1)^2}\right)^2$
- $3(g(x))^{2}g'(x) = 3(\frac{x}{x-1})^{2} \cdot \frac{(x-1)-x}{(x-1)^{2}}$
- $\left(g'\left(x
 ight)
 ight)^{3}=\left(rac{\left(x-1
 ight)-x}{\left(x-1
 ight)^{2}}
 ight)^{3}$

25) Let g be the function given by $g(x) = \sin{(-x)} + \cos{x} - 10$. Which of the following statements is true for y = g(x)?

© g''(x) - 10 = g(x)