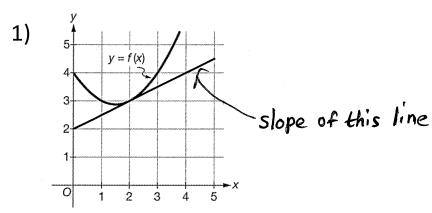
Unit 2 AP Classroom Practice for Sections 1-5

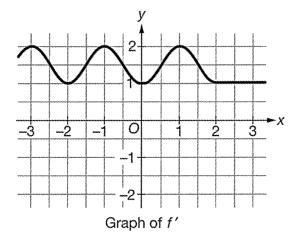


Shown above is the graph of the differentiable function f, along with the line tangent to the graph of f at x=2. What is the value of f'(2) ?

- \bigcirc A $\frac{1}{2}$
 - **B** 2
 - © 3
 - (D) 4
- 2) An equation for the line tangent to the graph of the differentiable function f at x=3 is y=4x+6. Which of the following statements must be true?

f(0) = 6 = on tangent line, not the function (1) f(3) = 18 = on function and tangent line (111:) f'(3) = 4 = slope of tangent line

- (A) None
- B I and II only
- © II and III only
 - D I, II, and III



slope of tangend line at

Let f be a differentiable function with f(1)=3. The graph of f^{\prime} , the derivative of f, is shown above.

Which of the following statements is true about the line tangent to the graph of f at x=1?

f'(1) = Z from graph a bove

- lack lack The tangent line has slope 2 and passes through the point (1,3).
- f B The tangent line has slope 2 and passes through the point (1,2).
- f C The tangent line has slope 0 and passes through the point (1,3).
- \bigcirc The tangent line has slope 0 and passes through the point (1,2).

4) GRAPHING CALCULATOR NEEDED (see where f(x) is increasing and steepest!)

Let f be the function given by $f(x)=x^4+\frac{1}{2}x^3-5x^2+\tan\left(\frac{x}{2}\right)$. Of the following values of x, at which does the line tangent to the graph of f have the greatest slope?

- $oxed{\mathbb{B}} \quad x = -1$
- $oxed{ extstyle extstyl$

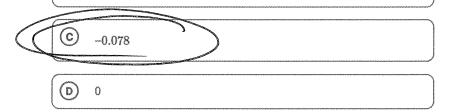
$$f'(x) = 4x^3 + \frac{3}{2}x^2 - 10x + \sec^2(\frac{x}{2}) \cdot \frac{1}{2}$$

$$f'(-1) \approx 8.149 \text{ which is the LARGEST}$$

5) GRAPHING CALCULATOR NEEDED (Find with calculator)

Let f be the function given by $f(x) = \cos x - \csc x$. What is the value of f'(1)?

- igotimes f'(1) is undefined.
- B -0.648



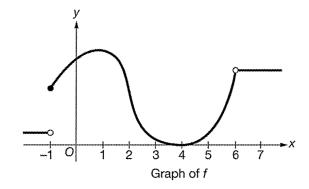
or

$$f'(x) = -\sin x + \csc x \cot x$$

 $f'(1) = -\sin (1) + \csc (1) \cot (1)$

use calculator = -,078

6)



The figure above shows the graph of a function f, which has a vertical tangent at x=2 and a horizontal tangent at x=4. Which of the following statements is false?

- B f is not differentiable at x=2 because the graph of f has a vertical tangent at x=2.
- f is not differentiable at x=4 because the graph of f has a horizontal tangent at x=4
- $oldsymbol{\hat{D}}$ f is not differentiable at x=6 because the graph of f has a removable discontinuity at x=6.

has a slope of zero so "IS" differential

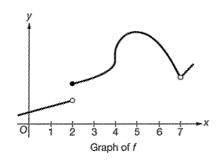
$$f(x) = \begin{cases} x^2 - 20 & \text{for } x < 5 \\ -x^2 + 20 & \text{for } x \ge 5 \end{cases}$$

5 5

Let f be the function defined above. Which of the following statements is true?

- igapha f is not differentiable at x=5 because f is not continuous at x=5.
- $oxed{\mathsf{B}} f$ is not differentiable at x=5 because the graph of f has a sharp corner at x=5.
- \bigcirc f is not differentiable at x=5 because the graph of f has a vertical tangent at x=5.
- $footnote{f D}$ f is not differentiable at x=5 because f is not defined at x=5.

8)



The figure above shows the graph of a function f, which has a vertical tangent at x=4 and a horizontal tangent at x=5. Which of the following statements is false?

- igain f is not differentiable at x=2 because the graph of f has a jump discontinuity at x=2
- $footnote{B}$ f is not differentiable at x=4 because the graph of f has a vertical tangent at x=4.
- $oxed{\mathbb{C}}$ f is not differentiable at x=5 because the graph of f has a horizontal tangent at x=5

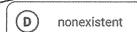
slope of zero so

 $egin{align*} egin{align*} egin{align*} f ext{ is not differentiable at } x=7 ext{ because the graph of } f ext{ has a removable discontinuity at } \\ x=7. \end{aligned}$

$$g(x) = \begin{cases} 2 - 2x & \text{for } x < 1\\ 5x - 5 & \text{for } x \ge 1 \end{cases}$$

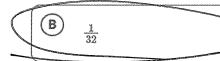
If g is the function defined above, then $g'\left(1\right)$ is

© 5

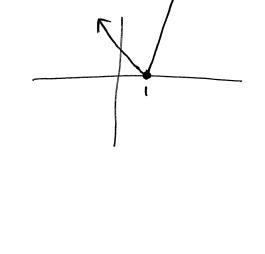


slope from left NOT equal slope from right

10) What is the value of $\lim_{h\to 0} \frac{(16+h)^{\frac{1}{4}}-2}{h}$?



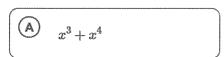
 $\bigcirc \frac{1}{8}$

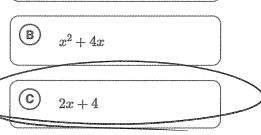


means derivative of $\sqrt[4]{x}$ evaluated when x=16

$$|f f(x)| = \frac{1}{4} \frac$$

11) $\lim_{h\to 0} \frac{(x+h)^2+4(x+h)-x^2-4x}{h}$ is





nonexistent

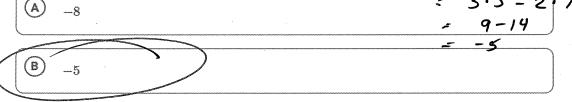
means the derivative of $\gamma^2 + 4\chi''$

$$f'(x) = x^2 + 4x$$

$$f'(x) = 2x + 4$$

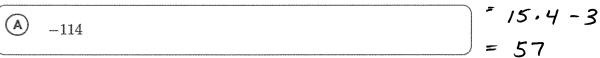
12) Let f and g be differentiable functions such that f'(0)=3 and g'(0)=7. If

 $h(x) = 3f(x) - 2g(x) - 5\cos x - 3, \text{ what is the value of } h'(0)? \quad h'(x) = 3 \cdot f'(x) - 2 \cdot g'(x) + 5\sin x$ $h'(0) = 3 \cdot f'(0) - 2 \cdot g'(0) + 5\sin(0)$ $= 3 \cdot 3 - 2 \cdot 7 + 5 \cdot 0$



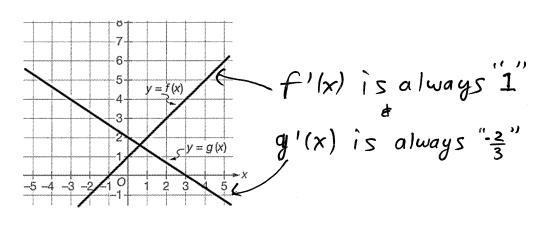
- © 1
- D 28
- Let f be the function given by $f(x) = 5x^3 3x 7$. What is the value of f'(-2)?

f'(x)= 15x2-3 => f'(-2)= 15.(-2) -3



- B 17
- © 50
- (D) 57

14)

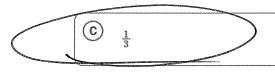


The graphs of the linear functions f and g are shown above. If h(x) = f(x) + g(x), then h'(x) = f'(x) + g'(x)

(A) 5/3

 $\frac{1 + \frac{-2}{3}}{-\frac{1}{3}}$

(B) (



① $\frac{1}{3}x+3$

15) If $f(x) = \sin x$, then $\lim_{x \to 2\pi} \frac{f(2\pi) - f(x)}{x - 2\pi}$

alternate def'n of limit def'n of derivative

BUT NUMERATOR OUT OF ORDER (f(x) should be 1st)

means opposite of the derivative

of sinx evaluated at x=277

$$\bigcirc$$
 -2π

B -1

© 1

 \bigcirc 2π

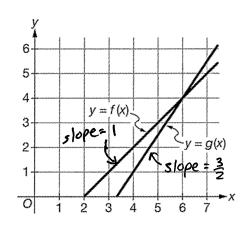
If
$$f(x) = \sin x$$

 $f'(x) = \cos x$

50 ... - 1

opposite of derivative of sing when $x=2\pi$

16)



 $h'(x) = f(x) \cdot g'(x) + g(x) \cdot f(x)$ $h'(4) = f(4) \cdot g'(4) + g(4) \cdot f'(4)$ $= 2 \cdot \frac{3}{2} + 1 \cdot 1$ = 3 + 1

The graphs of the linear function \boldsymbol{f} and the linear function \boldsymbol{g} are shown in the figure above. If

h(x) = f(x)g(x), then h'(4) =

- \bigcirc $\frac{3}{2}$
- Let f be a differentiable function such that f(2) = 2 and f'(2) = 5. If $g(x) = x^3 f(x)$, what is the value of g'(2)? $g'(x) = \chi^3 \cdot f'(x) + f(x) \cdot 3\chi^2$ $g'(z) = 2^3 \cdot f'(z) + f(z) \cdot 3(z)$
 - A 17 40 + 24 64
 - B 24
 - © 60
 - (D) 64

x	f(x)	f'(x)	g(x)	g'(x)
0	4	-	-2	3 2
	***************************************		·····	h

$$h'(x) = \frac{(g(x)-1) \cdot G \cdot f'(x) - Gf(x) \cdot g'(x)}{[g(x)-1]^2}$$

$$\frac{x \quad f(x) \quad f'(x) \quad g(x) \quad g'(x)}{0 \quad 4 \quad \frac{1}{2} \quad -2 \quad \frac{3}{2}}$$

$$h'(o) = \frac{(g(o)-1) \cdot G \cdot f'(o) - Gf(o) \cdot g'(o)}{[g(o)-1]^2}$$
The table above gives values of the differentiable functions f and g and their derivatives at $x = 0$. If
$$h(x) = \frac{6f(x)}{g(x)-1}$$
, then $h'(0) = \frac{(g(a)-1) \cdot G \cdot f'(a) - Gf(a) \cdot g'(a)}{[G(a)-1]^2}$

$$h(x)=rac{6f(x)}{g(x)-1}$$
 , then $h'(0)=$

Let
$$f$$
 be a differentiable function such that $f(8)=2$ and $f'(8)=5$. If g is the function defined by $g(x)=\frac{f(x)}{\sqrt[3]{x}}$, what is the value of $g'(8)$?

©
$$\frac{61}{24}$$

$$g'(x) = \sqrt[3]{x} \cdot f'(x) - f(x) \cdot \frac{1}{3}x$$

$$g'(x) = \frac{\sqrt[3]{x} \cdot f'(x) - f(x) \cdot \frac{1}{3}x^{-2/3}}{(\sqrt[3]{x})^2}$$

$$g'(8) = \frac{\sqrt[3]{8} \cdot f'(8) - f(8) \cdot \frac{1}{3} \cdot (8)^{-2/3}}{(\sqrt[3]{8})^2}$$

$$= \frac{2.5 - 2.\frac{1}{3}.\frac{1}{4}}{2^2} \Rightarrow \frac{10-\frac{1}{6}}{4}$$

$$\frac{\frac{1}{6}}{\frac{59}{6}}$$

- 20) If $f(x) = \sec x$, then $\lim_{x \to x} \frac{f(x) - f(\frac{x}{2})}{x - \frac{x}{2}}$ is
- means derivative of Secx evaluated at X= II
- (A)
- If f(x) = Secx

(B) $\sec\left(\frac{\pi}{2}\right)$

f (x) = secrtainx

(c) $\sec\left(\frac{\pi}{3}\right)\tan\left(\frac{\pi}{3}\right)$

nonexistent

 $f'(\frac{\pi}{3}) = Sec\frac{\pi}{3} tan \frac{\pi}{3}$ = 1 . 13 = 2.13

 $\frac{d}{dx}(\cos x \tan x) =$ 21)

0

(b)

- $\sec x + \sin x \tan x$
- d cosxtanx = rosxsec2x + tanx. (-sinx)
- (B) $\cos x$

= Secx - tanx sinx

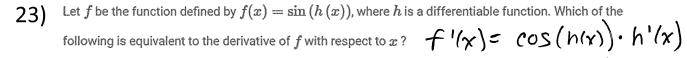
(c) $-\sin x \sec^2 x$ = Sinx Sinx

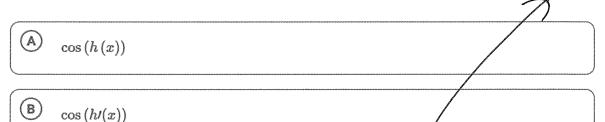
(D) $\sin x$

- $= \frac{1 \sin^2 x}{\cos x}$
- 22) Which of the following correctly shows the derivation of $\frac{d}{dx}(\cot x)$?
- - (A) $\frac{d}{dx}(\cot x) = \frac{d}{dx}(\frac{1}{\tan x}) = \frac{1}{\frac{d}{dx}(\tan x)} = \frac{-1}{\sec^2 x}$
 - $B) \quad \frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{1}{\tan x}\right) = \frac{1}{\frac{d}{dx}(\tan x)} = \frac{1}{\sec^2 x}$

- QUOTIENT
- (D) $\frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{1}{\tan x}\right) = \frac{\tan x \frac{d}{dx}(1) + 1 \cdot \frac{d}{dx}(\tan x)}{\tan^2 x} = \frac{\tan x \cdot 0 + \sec^2 x}{\tan^2 x} = \frac{\sec^2 x}{\tan^2 x}$

 $\frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{1}{\tan x}\right) = \frac{\tan x \frac{d}{dx}(1) - 1 \cdot \frac{d}{dx}(\tan x)}{\tan^2 x} = \frac{(\tan x) \cdot 0 - \sec^2 x}{\tan^2 x} =$





- © cos(h(x))h/(x) CHAIN RULE
- 24) Let $f(x) = x^3$ and $g(x) = \frac{x}{x-1}$. If h is the function defined by h(x) = f(g(x)), which of the following gives a correct expression for h'(x)?

$$(3(g(x))^2 = 3(\frac{x}{x-1})^2$$

(B)
$$3(g'(x))^2 = 3\left(\frac{(x-1)-x}{(x-1)^2}\right)^2$$

$$(c) \quad 3(g(x))^2 g'(x) = 3\left(\frac{x}{x-1}\right)^2 \cdot \frac{(x-1)-x}{(x-1)^2}$$

$$(g'(x))^3 = \left(\frac{(x-1)-x}{(x-1)^2}\right)^3$$

$$h(x) = \left(\frac{x}{x-1}\right)^{3} \qquad h'(x) = 3\left(\frac{x}{x-1}\right)^{2} \cdot \frac{(x-1)\cdot 1 - x\cdot 1}{(x-1)^{2}}$$

$$= 3\left(\frac{x}{x-1}\right)^{2} \cdot \frac{(x-1)\cdot x}{(x-1)^{2}}$$

25) Let g be the function given by $g(x) = \sin{(-x)} + \cos{x} - 10$. Which of the following statements is true for y = g(x)?

(A)
$$y+10=\frac{d^4y}{dx^4}$$
 So... $\frac{d^4y}{dx^4}=\frac{5in(-x)+\cos x-10+10}{\sin(-x)+\cos x}$

(B)
$$g^{(4)}(x) = (g''(x))^2$$
 $g^{4}(x) = (-\sin(-\alpha) - \cos\alpha)^2 + \cos^2(\alpha)$ below

©
$$g''(x) - 10 = g(x)$$
 $-\sin(-x) - \cos x - 10 \neq g(x)$

$$y'' = \sin(-x) + \cos x$$
 NOT TRUE (see $g''(x)$ below)

$$g'(x) = -\cos(-x) - \sin x$$

$$g''(x) = -\sin(-x) - \cos x$$

$$g''(x) = \cos(-x) + \sin x$$

$$g''(x) = \sin(-x) + \cos x$$