Unit 3 AP Classroom Practice for Sections 1-5

1)

A particle is moving on the x-axis and the position of the particle at time t is given by x (t), whose graph is shown above. Which of the following is the best estimate for the speed of the particle at time t=4?

- A 0
- **B** 5
- \bigcirc $\frac{15}{2}$
- **D** 10

2)

x	-2	-1	0	1	2
g(x)	-3	2	1	0	5

Selected values of a function g are shown in the table above. What is the average rate of change of g over the interval [-2,2]?

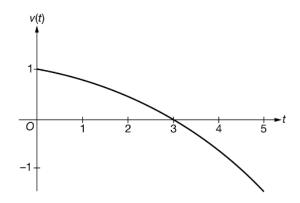
- $\begin{array}{ccc}
 & & \frac{2-(-2)}{5-(-3)}
 \end{array}$
- $\frac{}{}$ $\frac{5+(-3)}{2}$

A car is driven on a straight road, and the distance traveled by the car after time t=0 is given by a quadratic function s, where s (t) is measured in feet and t is measured in seconds for $0 \le t \le 12$. Of the following, which gives the best estimate of the velocity of the car, in feet per second, at time t=6 seconds?

- $s(8)-s(4) \over 8-4$
- 4) Let f be the function defined by $f(x)=e^{2x}$. The average rate of change of f over the interval [1,b] is 20, where b>1. Which of the following is an equation that could be used to find the value of b?

- **B** f(b) f(1) = 20
- $\frac{c}{\frac{f(b) f(1)}{b 1}} = 20$

- 5) The function t = f(S) models the time, in hours, for a sample of water to evaporate as a function of the size S of the sample, measured in milliliters. What are the units for f''(S)?
 - A hours per milliliter
 - (B) milliliters per hour
 - (C) hours per milliliter per milliliter
 - **D** milliliters per hour per hour


$$D\left(t\right)=10+4.9\cos\left(\frac{\pi}{6}t\right)$$

The function D defined above models the depth, in feet, of the water t hours after 12 A.M. in a certain harbor. Which of the following presents the method for finding the instantaneous rate of change of the depth of the water, in feet per hour, at 6 A.M.?

- **B** D'(6) = 0
- D''(6) = 1.343
- D D(6) = 5.100

7)	A particle moves along the x -axis so that at any time $t \geq 0$ its position is given by $x(t) = \frac{1}{2}(a-t)^2$
	where a is a positive constant. For what values of t is the particle moving to the right?

- $footnote{B}$ The particle is moving to the right only if a < t.
- f C The particle is moving to the right only if t=a.
- **D** The particle is not moving to the right.
- 8) An object moves along a straight line so that at any time $t,0\leq t\leq 9$, its position is given by $x\left(t\right)=7+6t-t^{2}.$ For what value of t is the object at rest?
 - igwedge t=3
 - $lackbox{B}$ t=6
 - $egin{array}{c} egin{array}{c} t=rac{13}{2} \end{array}$
 - $lackbox{D}$ t=7

A particle traveling on the x-axis has position x(t) at time t. The graph of the particle's velocity v(t) is shown above for $0 \le t \le 5$. Which of the following expressions gives the total distance traveled by the particle over the time interval $0 \le t \le 5$?


- **A** x(0) x(5)
- **B** x(5) x(0)
- (x(3)-x(0))+(x(3)-x(5))

10) Let x and y be functions of time t such that the sum of x and twice y is constant. Which of the following equations describes the relationship between the rate of change of x with respect to time and the rate of change of y with respect to time?

- $\frac{dx}{dt} = -2\frac{dy}{dt}$
- $egin{equation} oxtlessip oxtlessip rac{dx}{dt} + 2rac{dy}{dt} = K$, where K is a function of t

- A right triangle has base x feet and height h feet, where x is constant and h changes with respect to time t, measured in seconds. The angle θ , measured in radians, is defined by $\tan \theta = \frac{h}{x}$. Which of the following best describes the relationship between $\frac{d\theta}{dt}$, the rate of change of θ with respect to time, and $\frac{dh}{dt}$, the rate of change of h with respect to time?
 - $rac{d heta}{dt}=\left(rac{x}{x^2+h^2}
 ight)rac{dh}{dt}$ radians per second
 - $rac{d heta}{dt} = \left(rac{x^2}{x^2+h^2}
 ight)rac{dh}{dt}$ radians per second
 - $rac{d heta}{dt}=\left(rac{1}{\sqrt{x^2+h^2}}
 ight)rac{dh}{dt}$ radians per second
 - $rac{d heta}{dt}= an^{-1}\left(rac{1}{x}rac{dh}{dt}
 ight)$ radians per second
- 12) A particle moves on the hyperbola xy=15 for time $t\geq 0$ seconds. At a certain instant, x=3 and $\frac{dx}{dt}=6$. Which of the following is true about y at this instant?
 - $oldsymbol{oldsymbol{A}}$ y is decreasing by 10 units per second.
 - $oldsymbol{\mathbb{B}}$ y is increasing by 10 units per second.
 - $oldsymbol{\mathbb{C}}$ y is decreasing by 5 units per second.
 - \bigcirc y is increasing by 5 units per second.

13)	A piece of rubber tubing maintains a cylindrical shape as it is stretched. At the instant that the inner radius of the tube is 2 millimeters and the height is 20 millimeters, the inner radius is decreasing at the rate of 0.1
	millimeter per second and the height is increasing at the rate of 3 millimeters per second. Which of the following statements about the volume of the tube is true at this instant? (The volume V of a cylinder with
	radius r and height h is $V=\pi r^2 h$.)

- f B The volume is decreasing by 4π cubic millimeters per second.
- $\fbox{\textbf{C}}$ The volume is increasing by 20π cubic millimeters per second.
- lacktriangledown The volume is decreasing by 20π cubic millimeters per second.

14)

x	1	3	5	7	9
f(x)	0	6	18	29	42

Selected values of a differentiable function f are given in the table above. What is the fewest possible number of values of c in the interval [1,9] for which the Mean Value Theorem guarantees that f'(c)=6?

A	Zero										

- B One
- © Two
- (D) Three

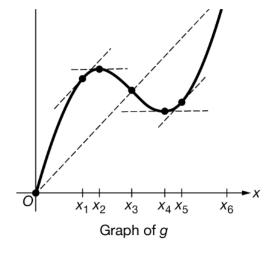
15) The Mean Value Theorem can be applied to which of the following functions on the closed interval [-5,5]?

$$\qquad \qquad f(x) = \tfrac{1}{\sin x}$$

$$oxed{\mathsf{B}} \quad f(x) = rac{x-1}{|x-1|}$$

$$\qquad \qquad f(x) = \tfrac{x^2}{x^2-36}$$

$$f(x)=rac{x^2}{x^2-4}$$


16) Which of the following functions of x is guaranteed by the Extreme Value Theorem to have an absolute maximum on the interval $[0,2\pi]$?

$$egin{array}{c} egin{array}{c} egin{array}$$

$$oxed{ egin{aligned} egin{aligned\\ egin{aligned} egin{aligne$$

$$oxed{c} \quad y=rac{x^2-2\pi x+\pi^2}{x-\pi}$$

$$egin{pmatrix} oldsymbol{oldsymbol{eta}} & y = rac{|x-\pi|}{x-\pi} \end{pmatrix}$$

The function g shown in the figure above is continuous on the closed interval $[0,x_6]$ and differentiable on the open interval $(0,x_6)$, where x_1,x_2,x_3,x_4,x_5 , and x_6 are points on the x-axis. Based on the graph, what are all values of x that satisfy the conclusion of the Mean Value Theorem applied to g on the closed interval $[0,x_6]$?

- $oxed{A}$ x_3 only, because this is the value where $g\left(x
 ight)$ equals the average rate of change of g on $\left[0,x_6
 ight].$
- $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} x_2 \ \ \ \ \ \end{aligned} \end{aligned} and <math>x_4$ only, because these are the values where g'(x)=0 on $[0,x_6]$.
- f C x_1 and x_5 only, because these are the values where the instantaneous rate of change of g at those values is equal to the average rate of change of g on $[0,x_6]$.
- \mathbf{D} x_1, x_3 , and x_5 only, because these are the values where either the instantaneous rate of change of g at the value is equal to the average rate of change of g on $[0, x_6]$ or the value of g(x) is equal to the average rate of change of g on $[0, x_6]$.

x	0	1	2	3
f(x)	0	4	7	6

Let f be a function with selected values given in the table above. Which of the following statements must be true?

- I. By the Intermediate Value Theorem, there is a value c in the interval (0,3) such that f(c)=2.
- II. By the Mean Value Theorem, there is a value c in the interval (0,3) such that f'(c)=2.
- III. By the Extreme Value Theorem, there is a value c in the interval [0,3] such that $f(c) \leq f(x)$ for all x in the interval [0,3].
- A None
- B I only
- © II only
- D I, II, and III
- 19) Let f be the function defined by $f(x)=(\sin x)e^{-x}$ on the interval $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. On which of the following open intervals is f increasing?
 - $\left(\bullet \quad \left(-\frac{\pi}{4}, \frac{\pi}{2} \right) \right)$
 - $oxed{\mathsf{B}} \quad \left(0, rac{\pi}{2}
 ight)$ only
 - $\left(\begin{array}{cc} \left(\frac{\pi}{4},\frac{\pi}{2}\right) \text{ only} \end{array}\right)$
 - $oxed{\mathsf{D}} \quad \left(-rac{\pi}{2},rac{\pi}{4}
 ight)$

Let f be the function with derivative given by $f'(x) = \sin x + \cos(2x) - \frac{\pi}{4}$ for $0 \le x \le \pi$. On which of the following intervals is f increasing?

- $\begin{tabular}{ll} \hline {\bf B} & [0,0.724] \ {\rm and} \ [2.418,3.142] \\ \hline \end{tabular}$
- \bigcirc [0, 0.253] and [1.571, 2.889]
- 21) Let f be the function with derivative given by $f'(x) = x^2 a^2 = (x a)(x + a)$, where a is a positive constant. Which of the following statements is true?

 - $oxed{\mathsf{B}} \quad f$ is decreasing for x < -a and x > a because f'(x) < 0 for x < -a and x > a.
 - $oldsymbol{G}$ f is decreasing for x < 0 because f'(x) < 0 for x < 0.
 - $oldsymbol{ ilde{D}}$ f is decreasing for x < 0 because f''(x) < 0 for x < 0.

22)	The fun	ction f is defined by $f(x)=x^2e^{-x^2}$. At what values of x does f have a relative maximum?
	(A)	-2
	(B)	0
	(c)	1 only
	(D)	-1 and 1
23)	Let f be	a differentiable function with a domain of $(0,10)$. It is known that $f'(x)$, the derivative of $f(x)$,
		ive on the intervals $(0,2)$ and $(4,6)$ and positive on the intervals $(2,4)$ and $(6,10)$. Which of the g statements is true?
	(A)	f has no relative minima and three relative maxima.
	(B)	f has one relative minimum and two relative maxima.
	(c)	f has two relative minima and one relative maximum.
	(D)	f has three relative minima and no relative maxima.

Let f be the function with derivative $f'\left(x
ight)=x^3-3x-2$. Which of the following statements is true?

- $oldsymbol{\mathsf{A}}$ f has no relative minima and one relative maximum.
- $oldsymbol{f}$ has one relative minimum and no relative maxima.
- $f{C}$ f has one relative minimum and one relative maximum.
- $oldsymbol{\mathsf{D}}$ f has two relative minima and one relative maximum.
- 25) Let g be the function defined by $g(x)=|x|-3\,|x+1|$. What is the absolute maximum value of g on the closed interval [-2,2]?
 - (A) 1
 - $\begin{bmatrix} \mathbf{B} \end{bmatrix}$ -1
 - $egin{pmatrix} oldsymbol{\mathbb{C}} & -3 \end{pmatrix}$

B 2

 $\left(\begin{array}{cc} \mathbf{C} & \frac{25}{8} \end{array}\right)$

(D) 4

At what values of x does the graph of $y=x^2e^{-2x}$ have a point of inflection?

 $oxed{oldsymbol{oldsymbol{A}}} x=-2$ and x=0

 $oxed{\mathbf{B}} \quad x=0 ext{ and } x=1$

 $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} x = -2 - \sqrt{2} ext{ and } x = -2 + \sqrt{2} \end{aligned}$

 $x=1-rac{\sqrt{2}}{2}$ and $x=1+rac{\sqrt{2}}{2}$

The second derivative of the function g is given by $g''(x) = x^5 - 2.2x^4 - 6.61x^3 + 8.602x^2$. At which values of x in the interval -3 < x < 4 does the graph of g have a point of inflection where the concavity of the graph changes from concave up to concave down?

- $oxed{\mathbf{B}} \quad x = -2.3 ext{ and } x = 3.4 ext{ only}$
- x = -2.3, x = 1.1, and x = 3.4 only
- \mathbf{D} x = -2.3, x = 0, x = 1.1, and x = 3.4

29) Graphing Calculator Needed

The first derivative of the function h is given by $h'(x) = x^5 - 3x^2 + x$. What are all intervals on which the graph of h is concave down?

- $oldsymbol{A}$ $(-\infty,0)$ and (0.338,1.307)
- $(-\infty, 0.669)$
- \bigcirc $(-\infty,0.167)$ and $(1,\infty)$
- \bigcirc (0.167,1)

30)	Let f be a function such that $f\left(-1 ight)=1$. At each point (x,y) on the graph of f , the slope is given by
	$rac{dy}{dx} = -x^2 - xy + y^2 - 1$. Which of the following statements is true?

- $oldsymbol{eta}$ f has a relative minimum at x=-1.
- **B** f has a relative maximum at x = -1.
- f C f has neither a relative minimum nor a relative maximum at x=-1.
- $footnote{f D}$ There is insufficient information to determine whether f has a relative minimum, a relative maximum, or neither at x=-1.
- 31) Let f be a twice-differentiable function. Which of the following statements are individually sufficient to conclude that x=2 is the location of the absolute maximum of f on the interval [-5,5]?

I.
$$f'(2) = 0$$

II. x=2 is the only critical point of f on the interval [-5,5], and f''(2)<0.

III. x=2 is the only critical point of f on the interval [-5,5], and $f\left(-5\right) < f\left(5\right) < f\left(2\right)$.

- A II only
- (B) III only
- C I and II only
- D II and III only

x	0	1	2	3	4	5
f'(x)	-3	0	-1	5	0	-3
f''(x)	5.3	-2.0	1.7	-0.5	1.2	-5.1

Let f be a twice-differentiable function. Selected values of f' and f'' are shown in the table above. Which of the following statements are true?

- I. f has neither a relative minimum nor a relative maximum at x=1.
- II. f has a relative maximum at x=1.
- III. f has a relative maximum at x=4.
- (A) I only
- B II only
- C III only
- (D) I and III only
- 33) Let f be the function defined by $f(x) = \frac{1}{3}x^3 3x^2 16x$. On which of the following intervals is the graph of f both decreasing and concave down?

 - lacksquare (-2,3) only
 - \bigcirc (3,8)
 - $oxed{\mathbb{D}}$ $(8,\infty)$

3	4)
		,

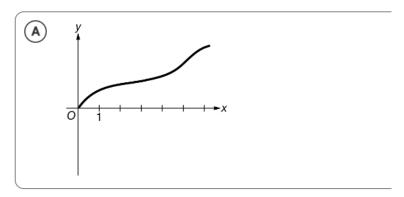
\boldsymbol{x}	0 < x < 3	x = 3	3 < x < 9	x = 9	9 < x < 11	x = 11	11 < x < 16
f'(x)	Positive	Undefined	Negative	-3	Negative	0	Positive
f''(x)	Positive	Undefined	Negative	0	Positive	0	Positive

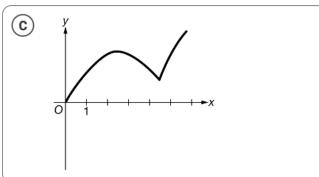
The function f is continuous on the interval (0,16), and f is twice differentiable except at x=3, where the derivatives are undefined. Information about the first and second derivatives of f for values of x in the interval (0,16) is given in the table above. At what values of x in the interval (0,16) does the graph of f have a point of inflection?

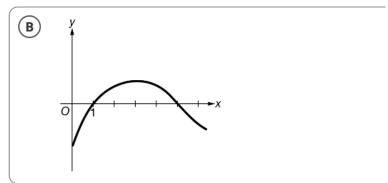
$$oldsymbol{\mathsf{A}} = 9 \, \mathsf{only}$$

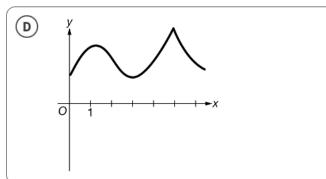
35) Graphing Calculator Needed

The first derivative of the function h is given by $h'(x) = \sin x + \cos (x^2) + x$, and the second derivative of h is given by $h''(x) = \cos x - 2x \sin (x^2) + 1$. On what open intervals contained in -3 < x < 2 is the graph of h both increasing and concave down?

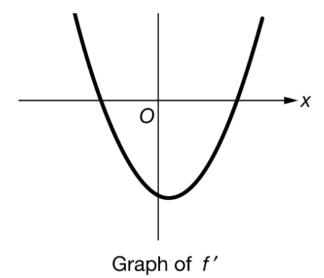

$$oldsymbol{A}$$
 $(0.969, 1.697)$ only

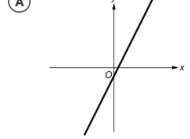

$$(-2.499, -1.829)$$
 and $(0.969, 1.697)$

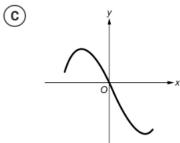

$$\bigcirc$$
 (-0.495, 2)

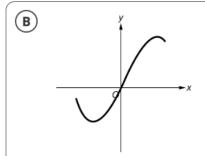

$$\bigcirc$$
 $(-1.311, -0.166)$

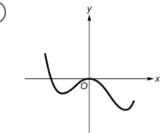
36) The function f is differentiable and increasing on the interval $0 \le x \le 6$, and the graph of f has exactly two points of inflection on this interval. Which of the following could be the graph of f', the derivative of f?

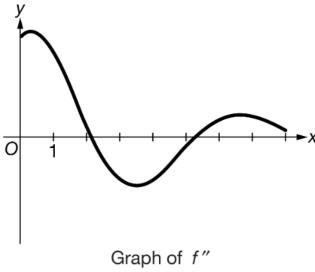


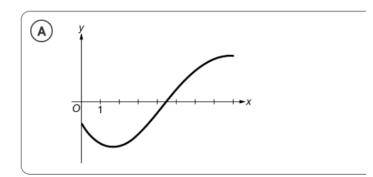


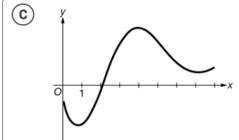


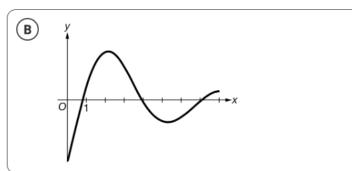

The graph of f^\prime , the derivative of the function f, is shown above. Which of the following could be the graph of f ?

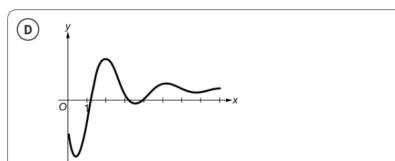







D





The graph of f'', the second derivative of the function f, is shown above on the interval $0 \leq x \leq 8$. Which of the following could be the graph of f ?

- 39) Let C be the curve defined by $x^2y=4$. Which of the following statements is true of curve C at the point (2,1)?
 - lack A It has a relative minimum because y'=0 and y''>0.
 - $oxed{\mathsf{B}}$ It has a relative maximum because y'=0 and y''<0.
 - f C It is decreasing and concave up because y' < 0 and y'' > 0.
 - lacktriangledown It is decreasing and concave down because y'<0 and y''<0.
- 40) Consider the curve defined by $\frac{x^2}{16} \frac{y^2}{9} = 1$. It is known that $\frac{dy}{dx} = \frac{9x}{16y}$ and $\frac{d^2y}{dx^2} = -\frac{81}{16y^3}$. Which of the following statements is true about the curve in Quadrant IV?
 - $oldsymbol{oldsymbol{\mathbb{A}}}$ The curve is concave up because $rac{dy}{dx}>0.$
 - $oxed{\mathsf{B}}$ The curve is concave down because $rac{dy}{dx} < 0$.
 - $oldsymbol{\widehat{C}}$ The curve is concave up because $rac{d^2y}{dx^2}>0$.
 - $oxed{ extstyle extstyl$