Unit 3 AP Classroom Practice for Sections 6-9

 $oxed{1}$ Let f and g be inverse functions that are differentiable for all x. If f(3)=-2 and g'(-2)=-4, which of

the following statements must be false?

$$\underbrace{ \text{I. } f'(0) = \frac{1}{4} }$$

$$\text{II. } f'(3) = -\frac{1}{4}$$

III.
$$f'(5) = -\frac{1}{4}$$

 $(3,-2) \qquad (-2,3)$ (g'(-2)=-4)So. $f'(3)=-\frac{1}{4}$

(A) I only
$$f'(3) = -\frac{1}{4}$$
 So... all $f'(x)$ values

II only

(c)

MUST BE NEGATIVE OTHERWISE THE INVERSE

COULD NOT EXIST

(D) I and III only

III only

ANY function that included or decline FAILS HLT

For which of the following decreasing functions f does $(f^{-1})'(10) = -\frac{1}{8}$? and y-coord on f2)

· so x-coord on f-1

$$f(x) = -5x + 15 \qquad f'(x) = -5 \\ -8 \neq -5$$

(B) $f(x) = -2x^3 - 2x + 14$ f'(x)= -6x2-2

(c) $f(x) = -x^5 - 4x + 15$

 $f'(x) = -5x^4 - 4$

 $f'(x) = -2e^{-2x} - 1$ $f(x) = e^{-2x} - x + 9$

-5x4-4=-8

x= + 1/4 x= + 1/4

e-2x = 7

 $-2e^{-2x}-1=-8$

 $\begin{array}{ll}
\chi = \pm \sqrt{\frac{4}{5}} & \chi = \frac{\ln(\frac{7}{2})}{2} \\
(\sqrt[4]{5}, 10) & cannot \\
(\sqrt[4]{5}, -10) & f(x) = x - 4x + 15
\end{array}$ $\begin{array}{ll}
\chi = \frac{\ln(\frac{7}{2})}{-2} \\
15 & (\frac{\ln(74)}{-2}, 10) & on f(x) \\
10 & No!
\end{array}$

An increasing function
$$f$$
 satisfies $f(10) = 5$ and $f'(10) = 8$. Which of the following statements about the inverse of f must be true?

$$f'(10) = 8$$
 $f^{-1}(5,10)$
 $f'(10) = 8$ $(f^{-1})(5) = \frac{1}{8}$

(B)
$$(f^{-1})'(8) = 10$$

©
$$(f^{-1})'(5) = 8$$

$$(f^{-1})'(5) = \frac{1}{8}$$

$$g(x) \rightarrow (2,-5)$$
$$g^{-1}(x) \rightarrow (-5,2)$$

x	4	8
f(x)	11	6
f'(x)	-4	-3

$$g(x) = f(4x) - f(2x)$$

$$g'(x) = f'(4x) \cdot 4 - f'(2x) \cdot 2$$

$$g'(2) = f'(8) \cdot 4 - f'(4) \cdot 2$$
slope of q(x) at (2,-5)

The table above gives selected values for a differentiable and decreasing function f and its derivative. Let

g be the decreasing function given by g(x)=f(4x)-f(2x) , where g(2)=f(8)-f(4)=-5 . Which of the following describes a correct process for finding $(g^{-1})'(-5)$? = $\frac{1}{f'(g)\cdot 4 - f'(4)\cdot 2} = \frac{1}{(-3)\cdot 4 - (-4)\cdot 2}$

$$(g^{-1})'(-5) = rac{1}{g'(g^{-1}(-5))} = rac{1}{g'(2)}$$
 and $g'(2) = 4f'(8) - 2f'(4)$

B
$$(g^{-1})'(-5) = \frac{1}{g'(g^{-1}(-5))} = \frac{1}{g'(2)}$$
 and $g'(2) = f'(8) - f'(4)$

$$(g^{-1})'(-5) = g'(g^{-1}(-5)) = g'(2)$$
 and $g'(2) = f'(8) - f'(4)$

$$(g^{-1})'(-5) = g'(g^{-1}(-5)) = g'(2) \text{ and } g'(2) = 4f'(8) - 2f'(4)$$

= 2.6

Let f be a function such that at each point (x,y) on the graph of f, the slope is given by $\frac{dy}{dx}=y^2-x$. The graph of f passes through the point (1,2) and is <u>concave down</u> on the interval 1 < x < 1.5. Let k be

the approximation for $f\left(1.2\right)$ found by using the locally linear approximation of f at x=1. Which of the

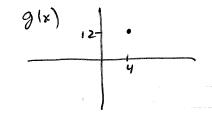
y = 3(x-1)+2 y(1.2) = 3(.2)+2following statements about k is true?

- (A)k = 5.6 and is an overestimate for f(1.2).
- k = 5.6 and is an underestimate for f(1.2).

tangent line above graph of f k=2.6 and is an overestimate for f(1.2).

- (D)k=2.6 and is an underestimate for f(1.2).
- 6) g'(4) = 2.2 y = 2.2(x-4)+12 y(4.2) = 2.2(4.2-4)+12 = 2.2(.2)+12

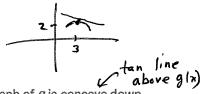
				·····
\boldsymbol{x}	3.8	4.0	4.2	4.4
g'(x)	-0.8	2.2	1.8	1.2



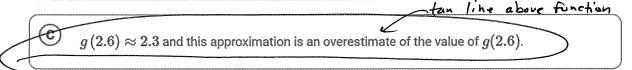
Selected values of the derivative of the function g are given in the table above. It is known that g(4) = 12.

What is the approximation for g(4.2) found using the line tangent to the graph of g at x=4?

- (A)12.44
- (B) 12.40
- [C] 12.36
- (D)11.60



- Let g be a differentiable function such that g(3)=2 and $g(3)=-\frac{3}{4}$. The graph of g is concave down on the interval (2,4). Which of the following is true about the approximation for g(2.6) found using the line tangent to the graph of g at x=3? $y=-\frac{3}{4}(x-3)+2$ $y=-\frac{3}{4}(x-3)+2$ $y=-\frac{3}{4}(x-3)+2$ $y=-\frac{3}{4}(x-3)+2$
 - $g\left(2.6
 ight)pprox1.7$ and this approximation is an overestimate of the value of g(2.6).
 - g(2.6)pprox 1.7 and this approximation is an underestimate of the value of g(2.6).



- $g\left(2.6
 ight)pprox2.3$ and this approximation is an underestimate of the value of g(2.6).
- Let f be the function defined by $f(x)=3x+2e^{-3x}$, and let g be a differentiable function with derivative given by $g'(x)=4+\frac{1}{x}$. It is known that $\lim_{x\to\infty}g(x)=\infty$. The value of $\lim_{x\to\infty}\frac{f(x)}{g(x)}$ is
 - (A) 0

 - © 1
 - (D) nonexistent

$$\frac{f'(x)}{g(x)} = \frac{3}{3} - 6.0$$
So ... = $\lim_{x \to \infty} \frac{f'(x)}{g'(x)}$

$$= \lim_{x \to \infty} \frac{3 - 6e^{-3x}}{4 + \frac{1}{x}}$$

$$= \frac{3}{4}$$

9)
$$\lim_{t\to 0} \frac{\sin t}{\ln(2e^t-1)}$$

$$\lim_{t\to 0}\frac{\sin t}{\ln(2e^t-1)} = \frac{\sin(0)}{\ln(2e^0-1)} = \frac{0}{\ln 1} = \frac{0}{0}$$

$$= \lim_{t \to 0} \frac{\cos t}{\frac{1}{2e^{t}-1} \cdot 2e^{t}} \stackrel{\text{Cos}(0)}{=} \frac{1}{\frac{1}{2e^{t}-1} \cdot 2e^{0}} = \frac{1}{\frac{1}{2-1} \cdot 2e^{0}}$$

 $=\frac{1}{1\cdot 2}$

= 1

- 10) $\lim_{x \to \frac{\pi}{2}} \frac{3\cos x}{2x-\pi}$ is $\frac{3\cos \frac{\pi}{2}}{2 \cdot \frac{\pi}{2} \pi} = \frac{3 \cdot 0}{\pi \pi}$

 - nonexistent

$$= \lim_{x \to \frac{\pi}{2}} \frac{-3\sin x}{2}$$

$$= \frac{-3 \cdot \sin(\frac{\pi}{2})}{\frac{2}{2}}$$

$$= \frac{-3 \cdot 1}{2} = \frac{-3}{2}$$

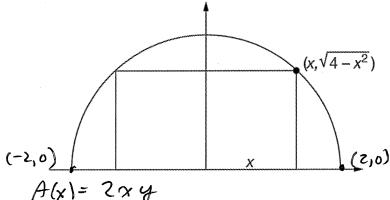
11)
$$\lim_{x \to \pi} \frac{x + \pi \sec x}{x^2 - \pi^2} \text{ is } \Rightarrow \frac{\pi + \pi \cdot \sec(\pi)}{\pi^2 - \pi^2} = \frac{\pi + \pi \cdot (-1)}{\pi^2 - \pi^2} = \frac{0}{0}$$

- $\bigcirc A = \frac{\pi}{2}$
- B 0
- - (D) nonexistent

$$= \lim_{\chi \to \pi} \frac{1 + \pi \operatorname{Sec}_{\chi} \tan \chi}{2 \chi} = \frac{1 + \pi \cdot \operatorname{Sec}_{\pi} \tan \pi}{2 (\pi)}$$

$$= \frac{1 + \pi \cdot (-1)(0)}{2 \pi}$$

$$=\frac{1}{2\pi}$$



The figure above shows a rectangle inscribed in a semicircle with a radius of 2. The area of such a rectangle is given by $A(x)=2x\sqrt{4-x^2}$, where the width of the rectangle is 2x. It can be shown that $A'(x)=\frac{-2x^2}{\sqrt{4-x^2}}+2\sqrt{4-x^2}$ and A has critical values of -2, $-\sqrt{2}$, $\sqrt{2}$, and 2. It can also be shown that A'(x) changes from positive to negative at $x=\sqrt{2}$. Which of the following statements is true?

- igain 2 The inscribed rectangle with maximum area has dimensions $\sqrt{2}$ by $\sqrt{2}$.
- f B The inscribed rectangle with minimum area has dimensions $\sqrt{2}$ by $\sqrt{2}$.
- The inscribed rectangle with maximum area has dimensions $2\sqrt{2}$ by $\sqrt{2}$.
- lacktriangle The inscribed rectangle with minimum area has dimensions $2\sqrt{2}$ by $\sqrt{2}$.

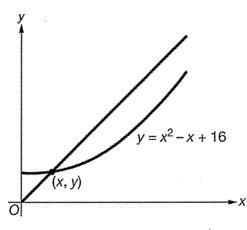
From
$$f(V_2) = \sqrt{4-(V_2)^2}$$

when $x = \sqrt{2}$
 $f(x) = \frac{-2x^2 + 2(4-x^2)}{\sqrt{4-x^2}}$

when $x = \sqrt{2}$
 $f(x) = \frac{8-4x^2}{\sqrt{4-x^2}}$
 $f(x) = \frac{8-4x^2}{\sqrt{4$

13)

Looking to min/max slope of the line



(0,0)

Consider all lines in the xy-plane that pass through both the origin and a point (x,y) on the graph of $y=x^2-x+16$ for $1\leq x\leq 8$. The figure above shows one such line and the graph of $y=x^2-x+16$. Which of the following statements is true?

- igap 2 The line with minimum slope passes through the graph of $y=x^2-x+16$ at x=1.
- $oxed{\mathbb{B}}$ The line with minimum slope passes through the graph of $y=x^2-x+16$ at x=4.
- $oxed{\mathbb{C}}$ The line with minimum slope passes through the graph of $y=x^2-x+16$ at x=7.
- The line with minimum slope passes through the graph of $y = x^2 x + 16$ at x = 8.

$$M = \frac{4-0}{x-0}$$

$$M = \frac{\chi^2 - \chi + 16}{\chi}$$

$$m = x - 1 + 16x^{-1}$$

$$m'(x) = 1 - 16x^{-2}$$

$$0 = 1 - \frac{16}{x^{2}}$$

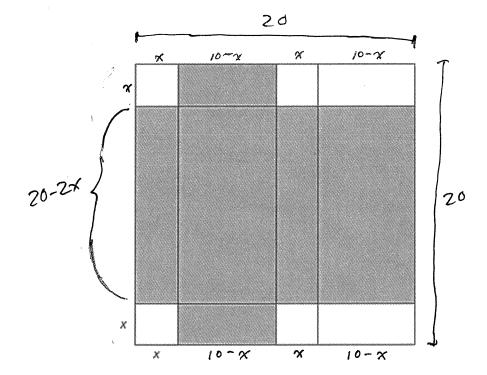
$$0 = x^{2} - 16$$

$$0 = (x+4)(x-4)$$

The state of the s

15 2 8

rel min for slope when x=4



The figure above represents a square sheet of cardboard with side length 20 inches. The sheet is cut and pieces are discarded. When the cardboard is folded, it becomes a rectangular box with a lid. The pattern for the rectangular box with a lid is shaded in the figure. Four squares with side length x and two rectangular regions are discarded from the cardboard. Which of the following statements is true? (The volume V of a rectangular box is given by V = lwh.)

- igap A When x=10 inches, the box has a minimum possible volume.
- $oxed{\mathbb{B}}$ When x=10 inches, the box has a maximum possible volume.
- When $x = \frac{10}{3}$ inches, the box has a minimum possible volume.
- When $x=rac{10}{3}$ inches, the box has a maximum possible volume.

$$V = l \cdot w \cdot h$$

$$V = (20-2x)(10-x)(x)$$

$$V = (200-40x+2x^{2}) \cdot (x)$$

$$V = 2x^{3}-40x^{2}+200x$$

$$V'(x) = 6x^{2}-80x+200$$

$$V'(x) = 2(3x^{2}-40x+100)$$

$$V'(x) = 2(3x-10)(x-10)$$

$$0 = 2(3x-10)(x-10)$$

$$x = \frac{10}{3} \text{ or } x = 10$$

$$\frac{10}{3} = \frac{10}{10}$$

$$\frac{10}{3} = \frac{10}{10}$$
MAX volume volume