
Unit 6 Lessons 1-3 AP Classroom Practice

1) Let R be the region in the first quadrant bounded above by the graph of $y=\frac{7}{3}x+1$ and bounded below by the graph of $y=2^x$ for $0 \le x \le 3$. Which of the following definite integrals gives the area of region R?

$$\begin{split} & \text{I.} \int_0^3 \left(\left(\frac{7}{3} x + 1 \right) - 2^x \right) \! dx \\ & \text{II.} \int_0^3 \left(\frac{\ln y}{\ln 2} - \frac{3}{7} \left(y - 1 \right) \right) \! dy \\ & \text{III.} \int_1^8 \left(\frac{\ln y}{\ln 2} - \frac{3}{7} \left(y - 1 \right) \right) \! dy \end{split}$$

- (A) None
- B I only
- (C) I and II only
- (D) I and III only

2)

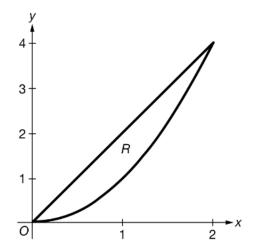
Let R be the region in the first quadrant bounded above by the graph of $y=1-x^2$ and below by the graph of $y=1-\sqrt{x}$, as shown in the figure above. What is the area of the region?

- A) -1
- B) 1/6
- C) 1/3
- D) 1

- 3) What is the area of the region in the first quadrant bounded on the left by the graph of $x=\frac{y^2}{2}$ and on the right by the graph of x=3y-4 for $2\leq y\leq 4$?
 - (A) $10 \frac{56}{6}$
 - (B) $10 + \frac{56}{6}$
 - \bigcirc $\frac{720}{8} \frac{112}{3}$
 - $\bigcirc \hspace{-.5cm} \begin{array}{ccc} \hline \hspace{-.5cm} D \hspace{-.5cm} & \frac{504}{6} \frac{192}{2} + 30 \\ \hline \end{array}$

The figure above shows the graph of $y=7x-x^2$ and the line y=10 for $0 \le x \le 5$. Which of the following gives the sum of the areas of the shaded regions?

- $\bigcirc A \qquad 50 \frac{175}{2} + \frac{125}{3}$
- $\bigcirc \qquad \frac{175}{2} \frac{109}{3} 38$
- $\bigcirc D \qquad \frac{175}{2} \frac{125}{3} + 50$


5) Graphing Calculator Needed

The base of a solid is the region in the first quadrant bounded by the graph of $y=\cos x$ and the x- and y-axes for $0\leq x\leq \frac{\pi}{2}$. For the solid, each cross section perpendicular to the y-axis is a rectangle whose height is four times its width in the xy-plane. What is the volume of the solid?

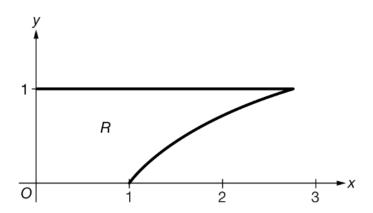
- A 0.285
- B 3.142
- (C) 4.000
- (D) 4.566
- 6) The base of a solid is the region in the first quadrant between the graph of $y=x^3$ and the x-axis for $0 \le x \le 1$. For the solid, each cross section perpendicular to the x-axis is a semicircle. What is the volume of the solid?
 - \triangle $\frac{\pi}{56}$
 - $\frac{\pi}{32}$
 - \bigcirc $\frac{\pi}{16}$
 - \bigcirc $\frac{\pi}{14}$


- 7) Let R be the region in the first quadrant bounded by the graph of $y=x^2$, the line x=4, and the x-axis. R is the base of a solid whose cross sections perpendicular to the x-axis are equilateral triangles. What is the volume of the solid?
 - $\bigcirc A \qquad \frac{16}{3}\sqrt{3}$

 - \bigcirc $\frac{512}{5}$
 - $\bigcirc \qquad \qquad \frac{1024}{5}\pi$
- 8) Graphing Calculator Needed

Let R be the region in the first quadrant bounded by the graphs of $y=x^2$ and y=2x, as shown in the figure above. The region R is the base of a solid. For the solid, each cross section perpendicular to the y-axis is a square. What is the volume of the solid?

- (A) 0.404
- (B) 0.533
- (C) 1.333
- D 2.667



Let R be the region in the first quadrant bounded by the x- and y-axes, the horizontal line y=1, and the graph of $y=\sqrt{x}-1$, as shown in the figure above. What is the volume of the solid generated when region R is revolved about the y-axis?

- \bigcirc A $\frac{7\pi}{3}$
- \bigcirc B $\frac{31\pi}{5}$
- \bigcirc 31 π
- \bigcirc 155 π

10) What is the volume of the solid generated when the region in the first quadrant bounded by the graph of $y=e^x$, the x-axis, and the vertical line $x=\ln 2$ is revolved about the x-axis?

- \bigcirc A π
- \bigcirc B $\frac{3\pi}{2}$
- \bigcirc 3π
- \bigcirc 6π

Let R be the region in the first quadrant bounded by the x- and y-axes, the horizontal line y=1, and the graph of $y=\ln x$, as shown in the figure above. What is the volume of the solid generated when region R is revolved about the y-axis?

$$\bigcirc$$
 $\pi (e-1)$

$$(c)$$
 $\pi (e^2-1)$

(D)
$$2\pi (e^2 - 1)$$

12) Let R be the region in the first quadrant bounded by the graph of $y = \tan x$, the x-axis, and the vertical line x = 1. Which of the following gives the volume of the solid generated when region R is revolved about the vertical line x = 1?

$$(A) \qquad \pi \int_0^{\tan 1} \left(1 - \arctan y\right)^2 dy$$

$$(B) \qquad \pi \int_0^1 (1 - \arctan y)^2 dy$$

$$\bigcirc \qquad \pi \int_0^{\tan 1} (1 - \arctan y) dy$$

What is the volume of the solid generated when the region bounded by the graph of $y=x^3$, the vertical line x=4, and the horizontal line y=8 is revolved about the horizontal line y=8?

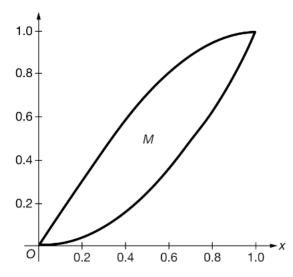
(A)
$$\pi \int_{2}^{4} (x^3 - 8) dx$$

(B)
$$\pi \int_{2}^{4} (x^{6} - 64) dx$$

$$\bigcirc$$
 $\pi \int_{2}^{4} (x^3 - 8)^2 dx$

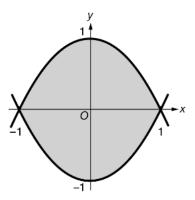
(D)
$$\pi \int_{2}^{4} (x^{3} + 8)^{2} dx$$

14) Let M be the region in the first quadrant bounded above by the graph of y=3x and below by the graph of $y=x^2$. Which of the following gives the volume of the solid generated when region M is revolved about the vertical line x=-3?


(A)
$$\pi \int_0^9 \left(\left(\sqrt{y} + 3 \right) - \left(\frac{y}{3} + 3 \right) \right)^2 dy$$

(B)
$$\pi \int_0^9 \left(\sqrt{y} - \frac{y}{3}\right) dy$$

$$\bigcirc \qquad \pi \int_0^9 \left(\left(\sqrt{y} \right)^2 - \left(\frac{y}{3} \right)^2 \right) dy$$


(D)
$$\pi \int_0^9 \left((\sqrt{y} + 3)^2 - \left(\frac{y}{3} + 3 \right)^2 \right) dy$$

15) Graphing Calculator Needed

Let M be the region in the first quadrant bounded by the graphs of $y=\sin\left(\frac{\pi x}{2}\right)$ and $y=x^2$. What is the volume of the solid generated when region M is revolved around the vertical line x=2?

- A 0.308
- (B) 0.953
- © 0.976
- D 2.836

Let R be the region bounded above by the graph of $y=1-x^2$ and below by the graph of $y=x^2-1$, for $-1 \le x \le 1$, as shaded in the figure above. What is the volume of the solid generated when region R is revolved about the horizontal line y=3?

- $\bigcirc A \qquad \frac{64\pi}{15}$
- \bigcirc B \bigcirc \bigcirc \bigcirc \bigcirc 8 π
- \bigcirc 12 π
- \bigcirc 16π