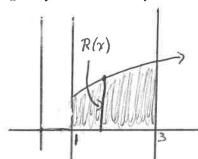

1a) Find the volume of the solid formed by revolving the region bounded by the graph of $f(x) = \sqrt{\sin x}$ and the x-axis $(0 \le x \le \pi)$ about the x-axis.

$$V = \pi \int_{a}^{b} [R(x)]^{2} dx$$

$$= \pi \int_0^{\pi} (\sqrt{\sin x})^2 dx$$


$$= \pi \int_0^{\pi} \sin x \, dx$$

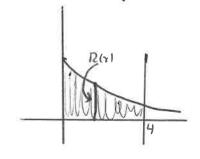
$$= \pi \Big[-\cos x \Big]_0^{\pi}$$

$$= \pi (1+1)$$

$$= 2\pi$$

1b) Find the volume of the solid formed by revolving the region bounded by the graphs $y = \sqrt{x}$, y = 0, x=1, x=3 about the x-axis. $\sqrt{x} = \pi \int_{-\infty}^{3} \left[R(x) \right]^{2} dx$

$$V = \pi \cdot S_{1}^{3} [R(x)]^{2} dx$$

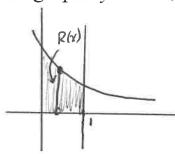

$$V = \pi \cdot S_{1}^{3} (\sqrt{x} - 0)^{2} dx$$

$$V = \pi \cdot S_{1}^{3} \gamma dx$$

$$V = \pi \cdot \left[\frac{x^{2}}{2}\right]_{1}^{3}$$

$$V = \pi \cdot \left[\frac{q_{2} - \frac{1}{2}}{2}\right]$$

1c) Find the volume of the solid formed by revolving the region bounded by



the graphs
$$y = \frac{1}{\sqrt{x+1}}$$
, $y = 0$, $x = 0$, $x = 4$ about the x-axis.

$$V = \pi \int_{0}^{4} \left[\frac{R(x)}{\sqrt{x+1}} \right]^{2} dx$$

$$V = \pi \int_{0}^{4} \frac{1}{\sqrt{x+1}} dx \quad \text{with } x = 1 \text{ for } x =$$

1d) Find the volume of the solid formed by revolving the region bounded by the graphs $y = e^{-x}$, y = 0, x = 0, x = 1 about the x-axis.

$$V = \pi S_{0} \begin{bmatrix} R(n) \end{bmatrix}^{2} dx$$

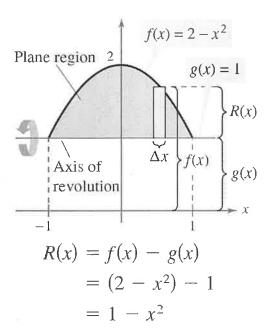
$$V = \pi S_{0} \begin{bmatrix} e^{-X} - o \end{bmatrix}^{2} dx$$

$$V = \pi S_{0} \begin{bmatrix} e^{-X} - o \end{bmatrix}^{2} dx$$

$$V = \pi S_{0} \begin{bmatrix} e^{-2X} dx & \frac{dv}{dx} = -2 \end{bmatrix}$$

$$V = \pi S_{0}^{-2} e^{v} - \frac{1}{2} dv$$

$$V = -\frac{\pi}{2} S_{0}^{-2} e^{v} dv$$


$$V = -\frac{\pi}{2} S_{0}^{-2} e^{v} dv$$

$$V = \frac{\pi}{2} [e^{-2} - 1]$$

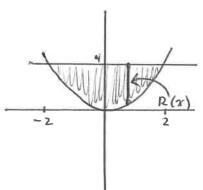
$$V = -\frac{\pi}{2} S_{0}^{-2} e^{v} dv$$

$$V = \frac{\pi}{2} [1 - e^{-2}]$$

2a) Find the volume of the solid formed by revolving the region bounded by $f(x) = 2 - x^2$ and g(x) = 1 about the line y = 1

$$V = \pi \int_{a}^{b} [R(x)]^{2} dx$$

$$= \pi \int_{-1}^{1} (1 - x^{2})^{2} dx$$


$$= \pi \int_{-1}^{1} (1 - 2x^{2} + x^{4}) dx$$

$$= \pi \left[x - \frac{2x^{3}}{3} + \frac{x^{5}}{5} \right]_{-1}^{1}$$

$$= \frac{16\pi}{15}$$

 $V = \frac{\pi}{2} \left[1 - e^{-2} \right]$

2b) Find the volume of the solid formed by revolving the region bounded by the graphs $y = x^2$, y = 4 about the line y = 4.

$$V = \pi \int_{-2}^{2} \left[R(x) \right]^{2} dx$$

$$V = \pi \int_{-2}^{2} \left[4 - x^{2} \right] dx$$

$$V = \pi \int_{-2}^{2} \left[16 - 8x^{2} + x^{4} \right] dx$$

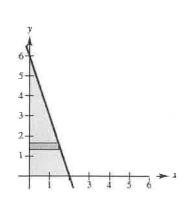
$$V = \pi \left[\left[16x - \frac{8}{3}x^{3} + \frac{x^{5}}{5} \right]_{-2}^{2} \right]$$

$$V = \pi \left[\frac{256}{15} - \left(-\frac{256}{15} \right) \right]$$

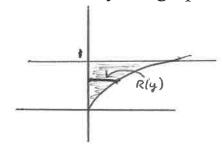
$$V = \left[\frac{512\pi}{15} \right]$$

3a) Find the volume of the solid formed by revolving the region bounded by the graphs y = 3(2 - x), y = 0, x = 0 about the line x = 0.

$$y = 6 - 3x \Rightarrow x = \frac{1}{3}(6 - y)$$


$$V = \pi \int_0^6 \left[\frac{1}{3}(6 - y) \right]^2 dy$$

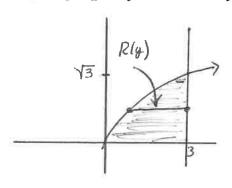
$$= \frac{\pi}{9} \int_0^6 \left[36 - 12y + y^2 \right] dy$$


$$= \frac{\pi}{9} \left[36y - 6y^2 + \frac{y^3}{3} \right]_0^6$$

$$= \frac{\pi}{9} \left[216 - 216 + \frac{216}{3} \right]$$

$$= 8\pi = \frac{1}{3}\pi r^2 h, \text{ Volume of cone}$$

3b) Find the volume of the solid formed by revolving the first quadrant region bounded by the graphs $y = x^{2/3}$, x = 0, y = 1 about the line x = 0.


$$V = \pi S_0' \left[R(y) \right]^2 dy$$

$$V = \pi S_0' \left[y^{3/2} - 0 \right]^2 dy$$

$$V = \pi S_0' y^3 dy$$

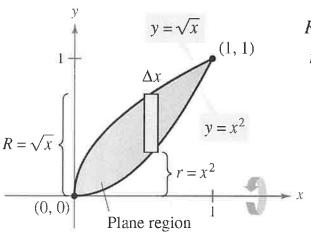
$$V = \pi \left[\frac{y^4}{4} \right]_0'$$

3c) Find the volume of the solid formed by revolving the region bounded by the graphs $y = \sqrt{x}$, y = 0, x = 3 about the line x = 3.

$$V = \pi S_0^{13} \left[\Re(y) \right]^2 dy \qquad \text{then } y^2 = \chi$$

$$V = \pi S_0^{13} \left[3 - y^2 \right]^2 dy \qquad \text{then } y^2 = \chi$$

$$V = \pi S_0^{13} \left[9 - 6y^2 + y^4 \right] dy \qquad \text{then } y^2 = \chi$$


$$V = \pi \left[\left(9y - 2y^3 + \frac{y^5}{5} \right) \right]_0^{13} \qquad \text{if } y = \chi$$

$$V = \pi \left[\left(9y^3 - 2y^3 + \frac{y^5}{5} \right) \right]_0^{13} \qquad \text{if } y = \chi$$

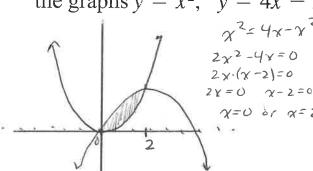
$$V = \pi \left[9y^3 - 2y^3 + \frac{y^5}{5} \right]_0^{13} \qquad \text{if } y = \chi$$

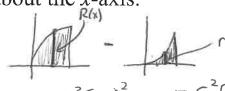
$$V = \pi \left[9y^3 - 2y^3 + \frac{y^5}{5} \right]_0^{13} \qquad \text{if } y = \chi$$

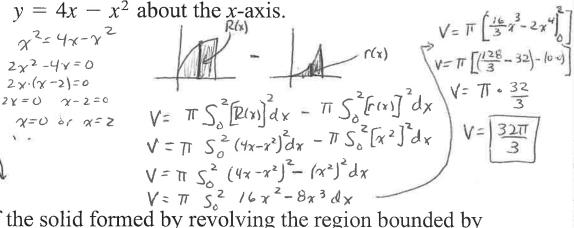
4a) Find the volume of the solid formed by revolving the region bounded by the graphs $y = \sqrt{x}$ and $y = x^2$ about the x-axis

$$R(x) = \sqrt{x}$$
$$r(x) = x^2$$

$$R(x) = \sqrt{x} \qquad V = \pi \int_{a}^{b} ([R(x)]^{2} - [r(x)]^{2}) dx$$

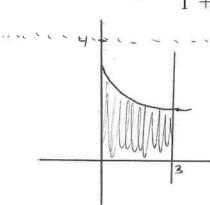

$$= \pi \int_{0}^{1} [(\sqrt{x})^{2} - (x^{2})^{2}] dx$$


$$= \pi \int_{0}^{1} (x - x^{4}) dx$$


$$= \pi \left[\frac{x^{2}}{2} - \frac{x^{5}}{5} \right]_{0}^{1}$$

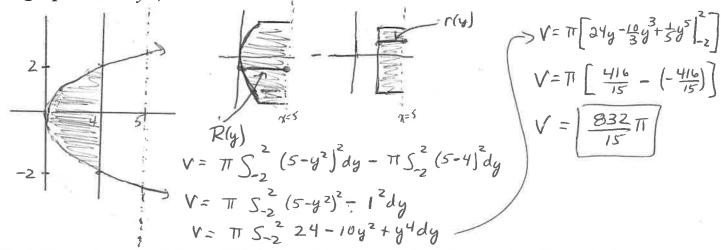
$$= \frac{3\pi}{10}$$

4b) Find the volume of the solid formed by revolving the region bounded by the graphs $y = x^2$, $y = 4x - x^2$ about the x-axis.



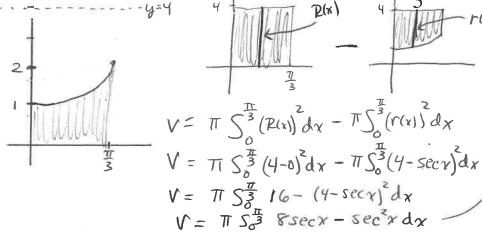
4c) Find the volume of the solid formed by revolving the region bounded by

the graphs $y = \frac{3}{1+x}$, y = 0, x = 0, x = 3 about the line y = 4.



$$V = \pi S_0^3 (4-0)^2 dx - \pi S_0^3 (4-\frac{3}{1+x})^2 dx$$

$$V = \pi S_0^3 16 - \left(4 - \frac{3}{1+x}\right)^2 dx \implies G.C. \approx 83.318$$


4d) Find the volume of the solid formed by revolving the region bounded by

the graphs $x = y^2$, x = 4 about the line x = 5.

4e) Find the volume of the solid formed by revolving the region bounded by

the graphs $y = \sec x$, y = 0, $0 \le x \le \frac{\pi}{3}$ about the line y = 4.

$$V = \pi \left[\frac{8 \ln |\sec x + \tan x| - \tan x}{6} \right]$$

$$V = \pi \left[\frac{8 \ln |2 + \sqrt{3}| - \sqrt{3}}{6} \right]$$

$$V = \pi \left[\frac{8 \ln |2 + \sqrt{3}| - \sqrt{3}}{6} \right]$$

- 4) AP MULTIPLE CHOICE EXAMPLES
- The region enclosed by the x-axis, the line x = 3, and the curve $y = \sqrt{x}$ is rotated about the x-axis. What is the volume of the solid generated?

(A)
$$3\pi$$

$$R(v)$$

$$3$$

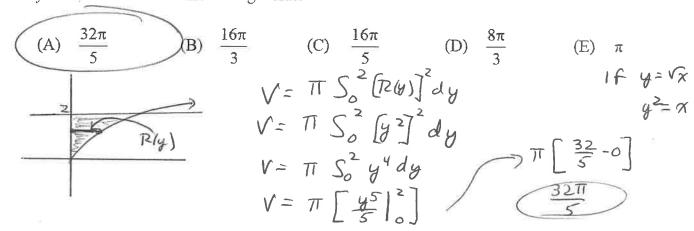
(B)
$$2\sqrt{3} \pi$$

$$(C) \quad \frac{9}{2} \pi$$

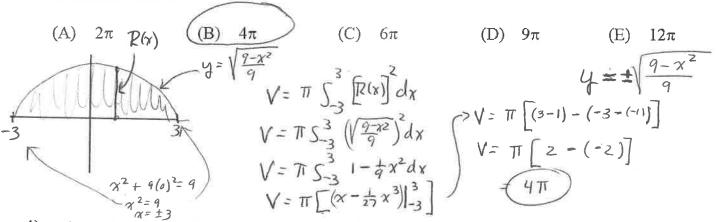
(D)
$$9\pi$$
 (E) $\frac{36\sqrt{3}}{5}\pi$

$$V = T \int_{0}^{3} [P(x)]^{2} dx$$

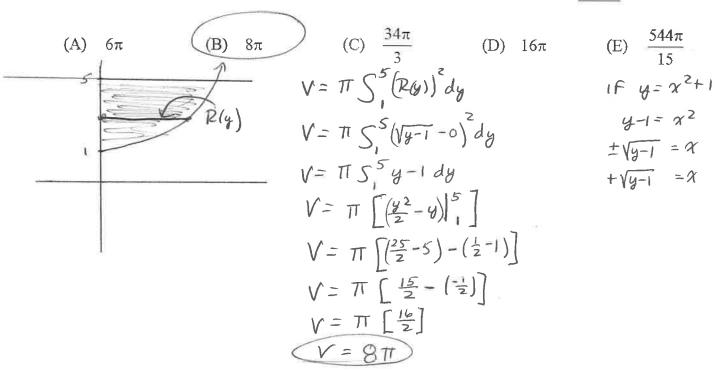
$$V = T \int_{0}^{3} (\sqrt{x})^{2} dx$$

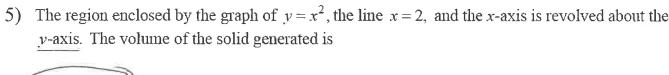

$$V = T \int_{0}^{3} x dx$$

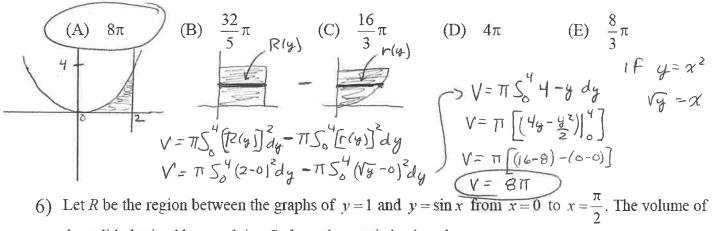
$$V = T \int_{0}^{3} \frac{x^{2}}{3} \int_{0}^{3} dx$$

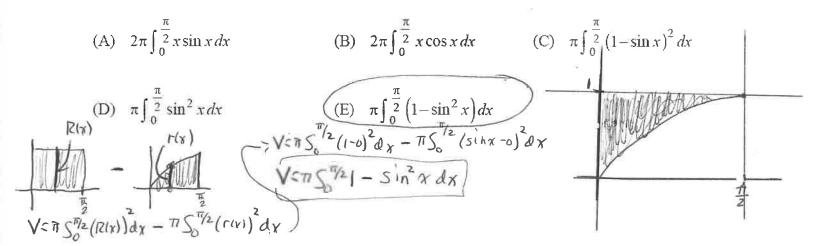

$$V = \pi \begin{bmatrix} \frac{9}{2} - 0 \end{bmatrix}$$

$$\frac{9\pi}{2}$$


2) If the region enclosed by the y-axis, the line y = 2, and the curve $y = \sqrt{x}$ is revolved about the y-axis, the volume of the solid generated is




3) The volume of the solid obtained by revolving the region enclosed by the ellipse $x^2 + 9y^2 = 9$ about the x-axis is


4) The region R in the first quadrant is enclosed by the lines x = 0 and y = 5 and the graph of $y = x^2 + 1$. The volume of the solid generated when R is revolved about the y-axis is

the solid obtained by revolving R about the x-axis is given by

The region R is enclosed by the graph of $y = 3x - x^2$ and the line y = x. If the region R is rotated about the line y = -1, the volume of the solid that is generated is represented by which of the following integrals?

(A)
$$\pi \int_{0}^{2} \left[3x - x^{2} - x + 1 \right]^{2} dx$$

(B) $\pi \int_{0}^{2} \left[\left(3x - x^{2} + 1 \right)^{2} - (x + 1)^{2} \right] dx$
(C) $\pi \int_{0}^{2} \left[\left(3x - x^{2} + 1 \right) - (x + 1) \right]^{2} dx$
(D) $\pi \int_{0}^{2} \left[\left(3x - x^{2} - 1 \right)^{2} - (x - 1)^{2} \right] dx$
 $V = \pi \int_{0}^{2} \left(R(x) \right)^{2} dx - \pi \int_{0}^{2} \left(r(x) \right)^{2} dx$
 $V = \pi \int_{0}^{2} \left(3x - x^{2} - (-1) \right) dx$
 $V = \pi \int_{0}^{2} \left(3x - x^{2} - (-1) \right) dx$
 $V = \pi \int_{0}^{2} \left(3x - x^{2} - (-1) \right) dx$